

Building a Decentralized
E-Voting Application on
Ethereum

Levin Heimgartner

Project of the National contest for Swiss Youth in Science

Modified on the 26.03.2023

1 |

Contents

Preface ... 3

1 Introduction ... 4

1.1 Encryption & Hashing .. 5
1.1.1 Public Key Cryptography ... 5
1.1.2 Signatures ... 5
1.1.3 Hashing ... 6

1.2 Decentralized Applications (Dapps) .. 6
1.2.1 Smart Contracts ... 6
1.2.2 Features of Dapps .. 7
1.2.3 Gas and Transaction Fees ... 8
1.2.4 Mnemonics ... 9

1.3 Advantages of a Decentralized Voting System ... 9

1.4 Requirements ... 10

2 User Perspective ... 12

2.1 User Types ... 12

2.2 Application Overview .. 12

2.3 Election Process ... 13

2.4 Transparency ... 14

3 Security Measures ... 16

3.1 Encryption .. 16
3.1.1 Vote Encryption .. 16
3.1.2 Encrypted Web Traffic ... 20

3.2 Verification Hashes ... 20
3.2.1 Verification Hash Generation .. 20
3.2.2 Linking Voter Ethereum Addresses and Voter Identities ... 21

3.3 Division of Power ... 22
3.3.1 Two-Thirds Majority Logic .. 22
3.3.2 Two-Thirds Request Cooldown ... 22
3.3.3 Complete Admins ... 22
3.3.4 Checks and Approvals ... 23

3.4 Anonymity .. 23

3.5 Preventing Replay Attacks in Meta Transactions ... 27

3.6 Preventing eligible Voters from not being able to vote .. 28

4 Process .. 28

4.1 Time Planning .. 28

4.2 Research ... 29

4.3 System Design Problems ... 30
4.3.1 Storing the Votes ... 30
4.3.2 Paying the Voters’ Transaction Fees .. 30

2 |

4.4 Coding .. 31
4.4.1 Registration App .. 31
4.4.2 Smart Contract ... 32
4.4.3 Admin App .. 34
4.4.4 Voting App ... 35
4.4.5 CLI Tool .. 36
4.4.6 Relay Server ... 36
4.4.7 Final Implementation ... 37

5 Product .. 37

5.1 Pictures ... 38

5.2 Technical Overview ... 40
5.2.1 Admin Levels .. 40
5.2.2 Software Components ... 41
5.2.3 Initial Contract Deployment .. 43
5.2.4 Creating a Poll ... 45
5.2.5 User Voting ... 48
5.2.6 Counting Votes ... 51

5.3 Operating Costs ... 52

5.4 Requirement Analysis .. 53

5.5 Possible Improvements ... 55
5.5.1 Additional Verification Features for the CLI Tool .. 55
5.5.2 Improve Central Data Storage in the Admin App .. 55
5.5.3 Separation of Servers .. 56
5.5.4 Adding a Zero-Knowledge Proof and reusable Accounts .. 56
5.5.5 Hardware Wallets .. 57
5.5.6 Access Letter Encryption between Registration App and Printers .. 58
5.5.7 Rewrite Code that generates Access Letters to C++ ... 58
5.5.8 Use ECC Keys instead of RSA Keys for Vote Encryption ... 59
5.5.9 Use dedicated Nodes ... 59
5.5.10 Better and more accessible UI .. 59
5.5.11 Custom Blockchain ... 59
5.5.12 Use different Salt than UUID ... 60
5.5.13 Improve Component Structure inside the Admin App ... 60
5.5.14 Add Tests and CI to the other Applications ... 60
5.5.15 Convert CLI Tool to Desktop Application ... 60

5.6 Conclusion .. 61

6 Appendix ... 63

6.1 Bibliography ... 63

6.2 Table of Figures ... 64

6.3 List of Tables ... 65

6.4 Listings ... 65

6.5 Code Repository .. 65

6.6 Declaration of Independence .. 65

3 |

Preface
When I was 12 years old, I first got interested in programming and was fascinated by the idea
that I could just sit down on a computer and write an application or a website that could then
be accessed by anyone in the world. I wrote my first application in swift for my iPhone and it
didn’t do anything useful, it just allowed navigating between some pages on which I placed
some text and buttons. I got the necessary knowledge to build the app from googling and
watching YouTube videos. The next step major step in my coding journey was learning
JavaScript, for which I bought a Udemy course to get started. Knowing JavaScript, I was then
also able to program servers and complex websites, meaning I could build virtually any project
I ever wanted to. In the years that followed I wrote websites, servers and bots for the numerous
“business ideas” I had all the time. The problem was that I never actually completely finished
any of the projects due to a loss of motivation or not having enough time to work on them.
This was one of the reasons I decided to write my matura paper in computer science: I wanted
to do a project with multiple software components that would be finished and useable at the
end.

After having decided to write the paper in computer science I started going through a list of
software-related business ideas for inspiration that I had in the last couple of years. I wasn’t
convinced of most of them because they were too simple and, in most cases, would have just
required a relatively simple website and server. At the same time, I by chance stumbled on the
official Ethereum website, where I read the term “decentralized application” for the first time.
Back then I had no idea what that was, so I started reading all the information about
decentralized applications they had on the Ethereum website. After reading everything on their
website and starting a coding tutorial for decentralized applications, I really liked the idea of
writing my paper about that subject. It was also something new and challenging which I liked.
The reason why I decided to write an e-voting system was that I was aware that there used
to be e-voting trials in progress in Switzerland, but that they have temporarily been stopped
because of security reasons. Additionally, a lot of websites and people said that decentralized
applications could be used for e-voting, but there aren’t a lot of decentralized e-voting
solutions actively used in the world.

At this point, I would like to thank my supervisor, Mr Marxer, for putting up with my project
and enduring our numerous meetings that often lasted more than an hour and for providing
valuable information and feedback. Then I would also like to thank my uncle, Mr Wihler, for
taking the time to review the paper and giving me feedback on it.

4 |

1 Introduction
Since 2003, 15 cantons in Switzerland conducted over 300 trials with electronic voting systems.
The trials were conducted within the project “Vote électronique”, which is a project of the
Swiss federal government and the cantons that aims to gradually introduce electronic voting
in Switzerland. In 2019, the cantons had the option to choose between two e-voting systems:
The system of the canton of Geneva and the system of the Swiss post. Things however changed
in the summer of 2019, when first the canton of Geneva made their system permanently
unavailable and shortly after the Swiss post announced that their system also won’t be
available anymore and that they are instead working on a new improved system. (Federal
Chancellery, 2021) This was after multiple vulnerabilities in the post’s system’s source code
were discovered after a public intrusion test conducted in 2019. (Wietlisbach, 2019) Since the
summer of 2019, after the shutdown of the two systems, there are no e-voting systems
available in Switzerland.

In 2008, when e-voting trials in Switzerland were already underway, the first blockchain was
introduced. This blockchain powered the Bitcoin cryptocurrency and made Bitcoin the first
cryptocurrency to solve the double-spending1 problem without the need for a trusted authority
or central server. (Wikipedia, 2021) With the launch of Ethereum in 2015, it became possible
to also run applications on blockchains. These applications are called decentralized
applications and are more transparent and, in most ways, also more secure than traditional
centralized applications, which makes them interesting for e-voting.

With the rise of decentralized applications and the need for secure e-voting systems in
Switzerland, the following question arises:

Is it possible to build a decentralized e-voting system that can be
used for governmental elections in Switzerland on initiatives and

referendums?

The goal of the paper is to write a decentralized e-voting system, whose core logic runs on an
Ethereum based blockchain. The system should be able to conduct elections securely and
transparently over initiatives and referendums like they are common in Switzerland. As far as
the security measures in the areas of software and system design are concerned, the system
should implement all the necessary security measures for carrying out a real election on a
national level. The system however does not need to be production-ready, because the paper
focuses on the design of the e-voting system with adequate security measures and the writing
of the code. Not part of the paper is a production deployment that fulfils all the necessary
security and privacy measures regarding the deployment and that has the capacity for carrying
out a national or cantonal election. Also not part of the paper is the execution of steps that
would be necessary for carrying out a real election on a national or a cantonal level, such as
obtaining permits or finding a printing company that prints the access data for the voters so
they can log in the e-voting system.

In the rest of the introduction, important concepts and definitions for the paper will be
explained, including what decentralized applications are and some of the basics of
cryptography. Building on the explanation of what decentralized applications are, the

1 https://en.wikipedia.org/wiki/Double-spending

5 |

advantages of a decentralized voting system will be highlighted. At the end of the introduction,
there will also be some additional requirements to the ones already mentioned before set out
that the system should fulfil.

Subsequently, the system will be introduced in Chapter 2. An overview of different user types,
the applications of the system and the steps of conducting an election with the e-voting system
will be given. Additionally, it will be shown how the system is transparent by allowing external
entities to monitor and verify the software used in the election process as well as the election
process itself and its results and how this improves security.

In chapter 3, the different security measures that are implemented by the e-voting system will
be shown and explained.

In chapter 4, the process of creating the paper and writing the code along with the problems
I encountered during the process will be described.

In chapter 5, a technical overview of the system will be given where important steps of the
election process will be explained in more detail. The chapter also gives a more technical
overview of the admin levels and the software components that were already explained
without technical details in the second chapter. Afterwards, the transactions fees (cost of using
a blockchain) for carrying out an election will be shown and compared between two
blockchains. Whether the requirements that were set out for the system, in the beginning, have
been met will also be analysed and possible improvements for future versions of the e-voting
system will also be shown.

Before starting with the paper some key concepts need to be explained first.

1.1 Encryption & Hashing
Encryption and hashing play a very important role on the internet we know today and is
particularly important for electronic voting. In this chapter, some of the key principles of
modern cryptography that are used in the voting system will be shortly introduced from a high-
level perspective.

1.1.1 Public Key Cryptography
“Public key encryption, or public key
cryptography, is a method of
encrypting [and decrypting] data
with two different keys and making
one of the keys, the public key,
available for anyone to use. The
other key is known as the private
key.” (Cloudflare, 2021) Anyone can
encrypt a message with the publicly
available public key, but the
message can only be decrypted by
the person that has access to the
private key.

1.1.2 Signatures
“A digital signature is a mathematical scheme for verifying the authenticity of digital messages
or documents. A valid digital signature, where the prerequisites are satisfied, gives a recipient

Figure 1 Public Key Cryptography (Twilio, 2021)

6 |

very strong reason to believe that the message was created by a known sender (authentication)
and that the message was not altered in transit (integrity).” (Wikipedia, 2021) A signature can
be made with a private key that only one entity has access to. The signature is mathematically
linked to the publicly available public key, meaning that other entities can verify that the
signature has been made by the entity having the private key, by checking if the signature
belongs to the corresponding public key.

1.1.3 Hashing
Hashing is the process of converting a given key into another value. A hash function takes an
input and outputs a newly generated value (hash) from the input according to a mathematical
algorithm. (Edpresso Team, 2021) Modern hashing algorithms like Keccak256 only work in one
direction, meaning that the input of the hash function can’t be retrieved from the output of the
hash function. The output of the hashing algorithm will almost all the time be different for
different inputs. Even if for example only one letter of a message that gets put into a hash
function is changed, the output will usually be completely different. However, it will always
return the same output for the same input. The input of a hash function like Keccak256 can
have any length, but the output of the hash function will always have the same fixed length,
regardless of the input’s length. Hashes are useful when you want to ensure that data hasn’t
been altered or that it is correct, without actually storing a copy of the data as a reference.
Passwords are for example usually stored as hashes by websites, meaning that the website
doesn’t need to store the actual password to check that a user entered the correct password.
The website can just compare the hash of the password entered by the user to the hash that
it stored.

1.2 Decentralized Applications (Dapps)
To understand the paper, a fundamental understanding of how a decentralized application,
short dapp, works and what it is are important. A dapp generally consists of two components.
The first component is the client-side. The client-side usually is a website hosted on a
conventional web server, but it can also be a mobile app on a phone or a desktop application.
The client-side allows users of the dapp to interact with the other component of the dapp, the
server-side. The server side of the dapp is a smart contract that runs on a peer-to-peer network
of computers, the blockchain. The server side of the dapp is what differentiates a dapp from
a conventional app.

1.2.1 Smart Contracts
Smart contracts are computer programs that are stored on a blockchain and can do essentially
anything that most basic computer programs can do. (Ethereum Foundation, 2021) A smart
contract is a collection of code, its functions, and the data it stores (the state of the
application). A smart contract is a type of Ethereum account, but unlike normal Ethereum
accounts, they are not controlled by a user but instead deployed to the blockchain. The
developer of the smart contract can set rules inside the contract, which will then automatically
be enforced by the code of the contract once it is deployed. Users can interact with the smart
contract by submitting transactions that execute a function defined on the smart contract.
(Ethereum Foundation, 2021) Users usually don’t directly make a transaction to the smart
contract, normally they interact with the smart contract over a client which makes the
transaction.

7 |

1.2.2 Features of Dapps
Dapps have some unique features compared to conventional apps, because of the smart
contract on their server-side.

Smart contracts protect the privacy of their users. This is because Ethereum is a pseudonymous
network where transactions aren’t publicly tied to the user’s real identity, but instead to a
unique address. (Ethereum Foundation, 2021)

One of the biggest benefits of smart contracts is that the outcome of a smart contract is
predictable because they always precisely execute based on the conditions written within their
code. (Ethereum Foundation, 2021)

Most Ethereum smart contracts are written in solidity2 or vyper3. But how does a smart contract
look like? Below you can see a very basic smart contract written in solidity that has one function
called updateName(), which updates the name string which is stored in the contract’s state.
Then there is also an address stored in the contract’s state called owner. The first line of code
inside the updateName() function requires that the user calling the function has the same
address as the owner address. If the user calling the function has the same address as the
owner, the name inside the contract’s state will be updated to the _newName parameter of
the function in the next line of code.

1. // SPDX-License-Identifier: MIT
2. pragma solidity >=0.7.0 <0.9.0;
3.
4. contract NameStorage {
5.
6. // The contract's state
7.
8. address public owner = 0xCa2215c9F029f2548C4964E1F84FD0131B6E3D83;
9. string public name;
10.
11. // The contract's function
12.
13. function updateName(string memory _newName) public {
14.
15. // The next line of code checks if the sender of the transaction
16. // has the same address as the owner. If this is not the case, the
17. // transaction will be reverted, and the name won't be updated.
18. require(msg.sender == owner);
19.
20. // Set the name in the contract's state equal
21. // to the _newName parameter
22. name = _newName;
23. }
24. }

Listing 1 Example smart contract

When the contract is deployed, it is stored on every node of the blockchain. Afterwards, when
someone makes a transaction to the contract and calls the updateName() function, every node

2 https://soliditylang.org
3 https://vyper.readthedocs.io/

8 |

on the network will execute the code inside the updateName() function with the same
transaction data to ensure that the transaction is processed after the rules set out in the
contract. The fact that hundreds of nodes owned by different entities verify transactions made
to smart contracts, and the network only updates the state of the contract if the majority of
the nodes deem the transaction to be correct, is what makes smart contracts so secure and
remove the need for trust.

Any interaction with a smart contract is irreversible and public. Anyone can view the state and
the code of the contract and transactions made to it. Every transaction made to the contract
or by the contract is stored in a public record. (Ethereum Foundation, 2021) For our simple
contract, this means that everyone can view the current name and owner of the contract and
a record of all transactions that have been made to the contract which includes all the changes
that have been made to the name since the contract’s existence.

Because the smart contract is publicly accessible, anyone can check the contents of the smart
contract’s code to view the logic of the contract. (Ethereum Foundation, 2021) This means that
if someone for example orders the sample contract above from a developer and exclusively
wants to have access to the updateName() function from their account, the buyer could easily
verify that this is the case by looking at the contract’s code.

The code of the smart contract written in solidity or vyper can’t directly be deployed to the
blockchain. For the Ethereum virtual machine to understand the code of the smart contract, it
first needs to be compiled to bytecode by a compiler.

1.2.3 Gas and Transaction Fees
“Gas refers to the unit that measures the amount of computational effort required to execute
specific operations on the Ethereum network. Since each Ethereum transaction requires
computational resources to execute, each transaction requires a fee.” (Ethereum Foundation,
2021) Gas is paid in the blockchain’s native currency, which is Ether on Ethereum. The entity
that makes the transaction bears these costs. In the case of the example smart contract in
Listing 1, the owner would need to pay the transaction fee that occurs when changing the
name.

Gas fees are necessary to help keep the Ethereum network secure. By requiring a fee for every
computation executed on the network, bad actors are prevented from spamming the network.
To avoid accidental or hostile infinite loops or other computational wastage in code, each
transaction is required to set a limit to how many computational steps of code execution it
can use. (Ethereum Foundation, 2021) The price of gas depends on the number of transactions
sent to the network. Each block has a maximum gas limit and on average only every 15 seconds
a new block is mined. This means that when a lot of transactions are sent to the network and
want to be included inside a block, the gas price, i.e., the price to be included in the block,
goes up because demand increases and supply stays the same. Since the London upgrade of
the Ethereum main net in August 2021, blocks have variable gas limits up to a limit of 30
million units of gas and every block now has a base fee and a priority fee. The base gas fee
needs to be paid for every transaction that wants to be included in the block, but the priority
fee is optional. It is a tip that a miner receives additionally to the regular block reward, which
means that miners are more likely to include transactions with high tips because they get more
money and thus the transaction gets processed faster.

9 |

1.2.4 Mnemonics
A mnemonic, also known as secret recovery phrase or seed phrase, is a set of typically either
12 or 24 words, which are used to derive the private key and thus also the address of a Bitcoin
or Ethereum account. (My Crypto, 2021) Using a mnemonic makes storing the Ethereum
account details easier because users don’t need to write down the private key itself, where
they might make spelling errors and subsequently lose access to their account. When users
need to enter their account details in a cryptocurrency wallet or website to access their Bitcoin
or Ethereum account this is much easier using a mnemonic where the users need to enter known
words as if they needed to enter a private key.

1.3 Advantages of a Decentralized Voting System
A decentralized voting system has several advantages over a centralized voting system, which
will be highlighted in this chapter.

First, we are going to look at a centralized voting system from a trust perspective. In a
centralized voting application, the voters need to trust the organization that organizes the poll
that they don’t manipulate the outcome of the poll in some way. “It’s easy to imagine, for
example, that a malicious developer or administrator of the voting application, colluding with
some party interested in a certain outcome of the voting, could access key parts of the system
and tamper with the way votes are collected, processed, and stored at various levels of the
application architecture. Depending on how the application has been designed, it could be
possible for some malicious database administrators to even modify votes retroactively.”
(Infante, 2019)

From a security perspective, the voters also need to worry if the centralized voting system is
adequately secured against external manipulation. “For example, external parties might be
interested in having the voting go a certain way and might try to get their desired outcome by
hacking into the system. […] a
centralized voting system includes
only a certain number of servers
located within the same network. Each
server generally provides only one
function, and it’s, therefore, a single
point of failure, not only from a
processing point of view but also, and
especially, from a security point of
view. For example, if a hacker
managed to alter code on the web
server so that votes were intercepted
and modified in that layer, the entire
system would be compromised. The
same outcome could be achieved by
hacking only into the application
server or, even better, into the
database server. A breach of security
in one part of the system is sufficient
to compromise the security of the
entire system.” (Infante, 2019)

Figure 2 Trust and security in Dapps thanks to P2P network
replication (Infante, 2019)

10 |

As we can see there are some major security and trust concerns in centralized voting systems.
Now we are going to look at a decentralized voting system which makes security and trust
breaches mostly pointless because it runs on a blockchain. The blockchain removes the need
for trust because if someone tried to maliciously alter a vote and propagate the modified vote
to the rest of the network, the other nodes would detect the vote as modified during their
validation and would reject it. They wouldn’t store it in their local copy of the blockchain and
wouldn’t propagate the altered vote further throughout the network, so the malicious
modification would become pointless. (Infante, 2019) The blockchain also makes the voting
system more secure because even if a hacker managed to modify votes on one node of the
blockchain network, the other nodes would spot and reject the alteration and wouldn’t
propagate it to the rest of the network. “Successful hacking would […] require compromising
not one server of the network but at least 51% of the nodes of the network simultaneously […].”
(Infante, 2019) This would be a very challenging and almost impossible task when the
application runs on Ethereum because as of the 19th November 2021 the Ethereum blockchain
has 3270 active nodes4.

A decentralized voting system also has all the other benefits of a smart contract. It has no
downtime, can be accessed anonymously, and all the transactions, its state and its code can
be publicly accessed and verified. Even if a centralized voting system makes its source code
public, the voters can’t be sure that the code made available to the public will get deployed
without any alterations. The code of the smart contract can also be looked at after it gets
deployed since the code is propagated to every node on the network and can’t be altered
afterwards, so the voters can exactly see which code gets executed during the voting process.
The counting of the votes will also be verified, and the result stored, on every node of the
blockchain, meaning that every voter can verify that their vote has been cast and counted.

1.4 Requirements
Before starting to work on the project, I decided to set out some requirements for the voting
system in addition to the requirements already mentioned in the Introduction. These
requirements should also help me to know what the system should be able to do in the end.

To set out these requirements, I first analyzed a document called “Anforderungskatalog für
eidgenössische Volksabstimmungen mit der elektronischen Stimmabgabe”56. The document
was issued by the Swiss federal chancellery and contains information about getting a permit
to carry out electronic elections in Switzerland including a catalogue with all the requirements
that must be met to get a permit.

For this paper, I am only going to use section 6 of the catalogue called "Anforderungskatalog"
because it contains all the requirements for an electronic voting system. The other sections
that I am not going to look at mainly contain information about getting a permit for carrying
out an election, which is not relevant for this paper because I am not going to carry out a real
political election.

In section 6, I am going to look at sub section 6, which contains a table with all the
requirements. Of all the requirements in the table, I am going to exclude the requirements
about getting the authorization for carrying out an election and the evaluation of the election
process. These are requirements 1, 3 to 8 and 16 to 19. I am also going to exclude requirement

4 https://etherscan.io/nodetracker
5 (Federal Chancellery, 2014)
6 As of May 25, 2022, a new version of this document has been put in effect.

11 |

14, which determines how the results of an election need to be formatted. It is excluded
because it also depends on the regular voting process by mail, which is also possible during
public e-voting trial runs in Switzerland. Requirement 2, “Requirements for a basic permit”, is
included, because it contains technical requirements for the voting system.

Catalogue Item Requirement Description
2 Requirements for

a basic permit
Only people entitled to vote are allowed to participate
in the voting process (Control of voting rights).
Every person entitled to vote is allowed only one vote
and they mustn’t be able to vote multiple times
(Uniqueness of the vote).
Third parties mustn’t be able to systematically and
effectively intercept, alter or redirect electronically cast
votes (Reliable reproduction of unadulterated will
manifestation).
The secrecy of the vote must be guaranteed.

9 Individual
verifiability

Voters must be able to detect whether their vote has
been manipulated or intercepted on the user platform
or during transmission.

10 Complete
verifiability

It must be ensured that voters or the examiners have
the opportunity to detect any manipulation that leads
to a distortion of the result while preserving the secrecy
of the vote.

11 User-friendliness A system for electronic voting must be easy to use for
voters and, in particular, should take into account the
needs of as many voters as possible.

12 Voters with
disabilities

The e-voting process shall be designed to
accommodate the needs of eligible voters who are
unable to cast their vote autonomously due to a
disability.

13 Invalid ballots The system should not provide for and accept invalid
ballots.

15 Tallying of the
votes

The results of an election need to be treated
confidentially between the decryption of the votes and
the publication of the results.

Table 1 Requirements that should be implemented in the voting system

Additionally, to the requirements set out in the catalogue, I also added some of my own
requirements:

1. The system should also be able to be used in non-governmental elections, for example
by a business for votes during shareholder meetings.

2. Important logic and data need to be processed and stored on the blockchain as far as
possible, to make the election process transparent.

In the Requirement Analysis, it will be analysed if, and to what extend the requirements have
been met.

12 |

2 User Perspective
This chapter gives a high-level overview of the voting system. First, the different user types
are introduced and after that, an overview of the applications necessary for carrying out an
election will be given. Then the major steps of the process of carrying out an election will be
shown and explained. Finally, the transparency of the e-voting system from the perspective of
users will be shown.

2.1 User Types
The voting system has multiple different user types, which will be shortly introduced in this
chapter. First, there are the voters who can vote on polls. Then there are the admins, which are
responsible for administrative tasks during the election process. There are 3 different types of
admins, the registrars, the chairpeople and the electoral board, which all have different duties.
The main duty of the electoral board is to oversee the election and to count the votes at the
end of an election. The main duty of the registrars is to register voters and the main duty of
the chairpeople is to create elections. Besides the voters and the admins, there is also technical
staff necessary to deploy and maintain the code. Finally, there is also a user type called poll
organizers. In case of a political election, this is the canton conducting the election, respectively
the department within the canton responsible for elections.

2.2 Application Overview
For the voting system to work, there are 6 different software components necessary, which will
be briefly introduced in this chapter.

First, there is the smart contract which is responsible for enforcing important logic and storing
important data like the polls and their details, votes or the voters. Then there is also a CLI tool
that has multiple functions during the voting process, but its main function is to create an RSA
key pair, whose public key is used to encrypt the votes, and the functionality to decrypt and
count the votes at the end of an election. For the admins to interact with the smart contract,
for example, to create a new poll, add voters or view the status of a poll, there is the admin
web app. To cast their votes, voters use the voting web app. When logged in, the app displays
the poll to vote on and the available options to vote for. After casting their vote, voters can
also verify in the app that their vote has been cast successfully. To cast the voter’s votes, there
is a relay server necessary that forwards the votes to the smart contract and bears the
transaction fee, so the voters don’t have to. The registration app is a desktop application that
allows the registrars to register voters, by creating access letters (also referred to as activation
letters) for them, which can then be used to log in to the voting web app.

13 |

2.3 Election Process
There are multiple different steps when carrying out an election. A high-level view of these
steps will be shown in this chapter, including the setup of the system and all preparations that
go into conducting an election. These steps will later be explained again in more detail in the
Product chapter.

Figure 3 Election Process

Step 0: The whole system gets deployed by the technical staff. This step is only necessary
when the system is first used or changes are made to the code.

Step 1: The organization carrying out the election determines the details of the poll (title,
opening & closing time etc.) and who should be eligible to vote on the poll.

Step 2: The encryption keys (public and private key) that will be used to encrypt the votes cast
by voters are generated by the electoral board.

Step 3: The chairpeople create a new poll with the details that have been determined by the
organization carrying out the election and the public key that has been generated in the
previous step.

Step 4: The registrars create access letters with mnemonics for the people that are eligible to
vote on the poll. The chairpeople then add the registered voters to the poll, verify them and
confirm them.

Step 5: Before the voters can start to vote on the poll once the opening time is reached, the
electoral board verifies that everything is correct with the poll. If this is the case, the electoral
board approves the poll.

Step 6: Once the opening time is reached, voters can start voting on the poll.

Step 7: When the tallying time has been reached, the electoral board uses the RSA private key
that corresponds to the public key that was used to encrypt the votes, to decrypt and count
the votes.

When another election needs to be made, the steps can be repeated in the same order, except
that the system doesn’t need to be redeployed every time. There can be multiple elections in
progress at the same time.

14 |

2.4 Transparency
Being transparent and publicly accessible is a major benefit the decentralized e-voting system
has over a centralized voting system because it runs on a blockchain. But what does
transparency actually mean for the e-voting system? This question is answered in this chapter
by showing the different ways transparency allows different entities to verify that the election
isn’t rigged and hasn’t been compromised.

Everyone can look at the smart contract’s code. The code of the smart contract is stored on
the blockchain which is publicly accessible. To look at the smart contract’s code entities can
either run their own node, which will then receive a copy of the whole blockchain including the
smart contract's code, the data it stores, event logs etc. or if they don’t want to or don’t know
how to run their own node, they can visit a block explorer for the blockchain where the contract
is stored. For the Ethereum main net, the explorer would be Etherscan7, and for the Ropsten
test network, the explorer would be Ropsten Etherscan8. On Etherscan the interested entities
can then enter the address of the smart contract in the search bar, which will take them to a
page with the contract’s information. On this contract page on Etherscan, they can then view
all the transactions that have been made to the contract under the “Transactions” tab.

Figure 4 Ropsten Etherscan's Transaction tab of the Evote smart contract

As you can see in Figure 4, interested entities can view the transaction hash, the method that
was called on the smart contract, the block in which the transaction was processed and when
it was processed, who sent the transaction, the value of the transaction and the transaction
fee in Ether. This means everyone can see when what action by whom is made on the contract.
Everyone can see when votes are cast, a new poll is created, votes are counted, voters added
etc.

7 https://etherscan.io/
8 https://ropsten.etherscan.io/

15 |

Figure 5 Ropsten Etherscan's Contract tab of the Evote smart contract

In the “Contract” tab of Etherscan’s contract page, everyone can view the source code of the
smart contract. It is important to note that this is the source code of the contract that is
actually deployed to the blockchain and can’t be modified anymore, meaning that this is
actually the code that handles transactions and stores data. People with a basic knowledge of
smart contracts or IT will be able to verify that the source code is correct and has no security
breaches and doesn’t have any backdoors for the government or other entities to manipulate
elections. On this tab, all data can also be manually read from the contract, including data
that by default is not displayed in the voting app, like the public key of a poll, the addresses
of admins, if the vote of any voter has been received or counted and much more. Furthermore,
voters can also look up the status of their vote to ensure that it really has been counted. They
could even manually count their vote using Etherscan’s “Write Contract” function if they are
worried that their vote hasn’t been counted.

Figure 6 Ropsten Etherscan's Events tab of the Evote smart contract

Another important view of Etherscan is the Events tab. It shows the events that the smart
contract emits. For the e-voting smart contract, the most important data that is shown here
are the encrypted votes that the contract received and the voters that were added or removed
from the contract. If a voter wants to verify if their vote really has been submitted additionally
to the confirmation in the voting app, they can visit this page and search for the event that
contains their vote and can then compare the data in the event with the vote confirmation
they received after having voted in the voting app.

As you can see, every voter can verify if their vote has been cast and counted thanks to the
transparency of the e-voting system. Furthermore, any entity can view the code of the contract,
all transactions that are made to the contract and the data that is stored on the contract which
includes the votes. Entities that run their own node can of course look at the same data as on

16 |

Etherscan and can additionally even see how the individual transactions are processed, which
of course requires more technical knowledge. The transparency of the system also means that
any attempt at trying to manipulate the transaction would immediately be visible to all entities
observing the election. If for example, someone unauthorized managed to remove some of the
voters of a poll, which is highly unlikely because there are security measures in place to prevent
this, this change would immediately be visible to anyone that is observing the poll because the
contract’s state will be changed in a transaction and events will be emitted when voters are
removed, which will all be visible on Etherscan or a node. The poll organizer could then stop
the election and set up a new one or deploy an updated smart contract where the security
vulnerabilities have been fixed.

3 Security Measures
To ensure a secure election process, several security measures have been implemented into
the voting system, besides the security features that are already given by the blockchain. These
security measures will be shown in this chapter.

3.1 Encryption
This chapter covers encryption-related security measures in the e-voting system.

3.1.1 Vote Encryption
The voting system needs to keep the votes secret until the election ends. To achieve this, the
voting system uses an RSA key pair to keep votes private until the election ends. The public
RSA key is stored on the smart contract and is used to encrypt the vote on the voter’s devices
(in the voter’s browser to be more specific) before sending it to the blockchain where the vote
is stored and publicly accessible. The RSA9 private key is itself encrypted using symmetric
encryption during its generation by the electoral board and can only be decrypted with all the
Ethereum private keys of all the electoral board members together. Requiring all the Ethereum
private keys of the electoral board to decrypt the RSA private key ensures that not one member
alone and no one that isn’t authorized can decrypt the votes before the election ends to look
at the results. In the case that one of the member’s Ethereum private keys gets compromised
this also ensures that no unauthorized person can decrypt the RSA key with only one of the
electoral board members’ Ethereum private keys.

9 The project uses practical RSA

17 |

The RSA keys are generated in the CLI tool using NodeJS’ crypto module’s
generateKeyPairSync() function. In the code snippet below the options used to create the keys
can be seen.

1. //create the keys with the NodeJS crypto module
2. const { publicKey, privateKey } = crypto.generateKeyPairSync("rsa", {
3. modulusLength: 4096,
4. publicKeyEncoding: {
5. type: 'spki',
6. format: 'pem'
7. },
8. privateKeyEncoding: {
9. type: 'pkcs8',
10. format: 'pem',
11. cipher: 'aes-256-cbc',
12. passphrase: passphrase
13. }
14. })

Listing 2 RSA key generation in the CLI tool

The private key is protected with a passphrase which is generated using the electoral board
members’ private keys. To generate the passphrase, the electoral board needs to enter their
Ethereum private keys in the CLI tool. The first Ethereum private key entered is hashed using
the Keccak512 hashing algorithm. This hash is then combined with the second Ethereum private
key entered and hashed again. This process is repeated for every Ethereum private key. After
the last Ethereum private key has been added to the hash of the previously hashed keys and
hashed again, the hash that has then been generated will be used as the passphrase.

The CLI tool also returns a positions file along with the RSA keys as an output. The order in
which the private keys are hashed to generate the passphrase is very important because a
different order would result in a different hash as the final output. The positions file contains
the addresses of the electoral board
members in the order their Ethereum
private keys have been hashed. This
information then will be used by the CLI tool
when the private key should be decrypted,
and the passphrase needs to be generated
again. The RSA private key along with the
positions file is stored by the organization
and the electoral board members until the
election ends and the votes need to be
counted. The RSA public key will be given
to the chairpeople that then store it on the
smart contract when they create the poll.

The order in which the keys are generated
and where they are stored is summarized in
Figure 7. The steps in Figure 7 take place in
steps 2 and 3 of the Election Process.

Figure 7 RSA key generation and RSA key storage

18 |

Later in step 6 of the Election Process
when a voter wants to submit their vote,
the RSA public key that is stored on the
smart contract is fetched and used to
encrypt the vote. Additionally to
encrypting the vote, the unencrypted vote
is also hashed to keep the vote secret. All
hashes and encrypted votes submitted by
the voters will be unique because a salt is
added to the vote before encryption and
hashing. From the hashed vote and the
encrypted vote along with some other
information, a meta transaction10 is
created and signed with the voter’s
Ethereum private key. The vote is then cast
with the meta transaction via the relay.
The smart contract then verifies that the
meta transaction is correct and sent by an
eligible voter. The encrypted vote and the
hash of the salted vote are then stored in
the smart contract’s event logs. The hash
of the vote is additionally stored in the
contract’s state. The encrypted vote is
stored only in the event log because the contract won’t need access to it later and it is cheaper
to store it this way. More information about storing the encrypted votes in the event log will
be provided in the Storing the Votes chapter. The hash on the other hand needs to be accessed
again later by the contract, which is why it is stored in the contract’s state.

10 Meta transactions are looked at in more detail in the Paying the Voters’ Transaction Fees chapter

Figure 8 Vote encryption and hashing in the voting app and
storage on the smart contract

19 |

In step 7 of the Election Process, when the votes
need to be decrypted and counted at the end of the
election, the electoral board first uses the CLI tool
to decrypt the RSA private key. The CLI tool does
this by deriving the passphrase from the Ethereum
private keys of the electoral board with the help of
the information provided in the positions file. After
decryption, the electoral board uses the CLI tool to
count the votes. For this, the CLI tool gets all the
events from the smart contract’s event log that
contain encrypted votes. The CLI tool then uses the
decrypted RSA private key to decrypt the encrypted
votes. The decrypted votes are then sent to the
smart contract for counting. The smart contract
regenerates the hashes of the votes that should be
counted and checks if the same hash of a vote has
been received during the user voting process. If this
is the case, the smart contract counts the vote, and
the hash of the vote is marked as counted in the
contract’s state to prevent double counting.

Comparing the hashes of the votes that are
submitted for counting to the hashes that have
been stored during the voting phase is a very
important security measure. It ensures that votes
that have been modified or weren’t cast during the
poll’s voting phase aren’t counted. If someone tries
to submit a vote for counting that wasn’t cast or
has been modified, a hash for this vote will be
calculated on the smart contract which won’t
match any of the vote hashes stored in the
contract’s state during the voting phase and the
contract won’t count the unrecognized vote.

After the votes have been counted by the admins, the decrypted RSA private key is made
publicly available so the public can verify that the votes have been decrypted and counted
correctly.

Figure 9 Vote decryption and vote counting

20 |

3.1.2 Encrypted Web Traffic
In a production deployment, the servers would use SSL and Transport Layer Security (TLS) 1.2
or 1.3 to encrypt web traffic between the different software components themselves and
between the components and nodes, that can read data from the blockchain and make
transactions. The table below shows which connections use encrypted web traffic and what
data is exchanged in the connections.

Encrypted Connection Exchanged Data
Frontend Server / Admin Web
App

The admin web app is loaded from the server.

Frontend Server / Voting Web
App

The voting web app is loaded from the server.

Admin Web App / Node Data regarding the contract is read from the node and
transactions are sent to the node.

Voting Web App / Node Data regarding the contract, like the poll details, the vote
options or the voter status, is requested from the node.

Voting Web App / Relay The meta transaction is sent to the relay.
Relay / Node Transactions that cast votes are sent to the node.
CLI Tool / Node Registrar addresses, verification hashes and data

necessary to count the votes are read from the node and
transactions that count the votes are sent to the node.

Table 2 SSL/TLS encrypted connections and exchanged data

3.2 Verification Hashes
The verification hashes are generated by the registration app, after the voter accounts and
access letters have been generated. The verification hashes are all the hashes of a hash tree
that is generated from the output files of the registration app. This hash tree links the output
together and provides security.

After the hash tree is generated, all the registrars are required to enter their Ethereum private
keys in the registration app, which then uses the keys to sign the hashes of the hash tree to
make sure they have been generated by someone authorized. If someone now modifies one of
the files contained in the hash tree, the hash of the file won’t be the same as before and the
root of the hash tree won’t be the same hash anymore, indicating that the files have been
tampered with. Even if someone creates a new hash tree with the modified files, they wouldn’t
be able to sign the resulting output, because they don’t have access to all the registrars’ private
keys.

The verification hashes allow the parties that receive one of the output files of the registration
app to verify that the data they received hasn’t been modified and is authentic. The verification
hashes also link the different output files of the registration app together to provide additional
security. How the verification hashes are generated and the importance of linking the files
together will be shown in the next two sub chapters.

3.2.1 Verification Hash Generation
Before the verification hashes are generated, it is assumed that the contents of the output files
of the registration app have already been generated.

Before the verification hashes are generated, some additional data is added to the output
before hashing. This data includes the poll id, poll title and the address of the smart contract.

21 |

The reason for this is to prevent replay attacks. If we assume that this data wouldn’t be
included in the output before hashing, the users.json and addresses.json files won’t have
anything inside them indicating for which poll they were generated, meaning that for example
to a chairperson the users and addresses file and their hashes and signatures will mostly look
fine, even though the data could be from an earlier poll, whose voter accounts could have been
compromised.

The registration app has four different output files which will be part of the hash tree. The
addresses.json file contains the Ethereum addresses of the voters that should be registered as
voters while the users.json file contains the name and the physical address of the voters. The
one.zip file contains all the first access letters of the voters and the two.zip file contains all the
second access letters of the voters.

The users and addresses arrays that will be written to the users.json and addresses.json file,
will receive a string as the first item of the arrays, which contains a nonce11 in form of
information about the poll and contract. After adding this information, the files are written to
a temporary location.

"pollID=1;pollTitle=Sample Poll;contractAddress=0xA92B4d628Ebd96aEC48f163dfde8830Da390Da88"

Listing 3 Nonce string that is added to the registration app output

To each of the two folders containing the access
letters, a file called poll.txt is added, which
contains the same nonce string as in Listing 3,
which is also included in the addresses.json and
users.json file.

The addresses.json and users.json files directly
get hashed, but the folders containing the first
and second access letters and the poll.txt file
first get compressed and the compressed
versions then get hashed. The hashes of all files
are generated using the Keccak256 hashing
algorithm.

After the verification hashes of the individual output files have been generated, two hashes
always get combined and hashed together to create a hash tree as shown in Error! Reference
source not found.. Afterwards, the hashes get signed using the registrars’ Ethereum private
keys. The hash tree and the signatures are then placed in a file called meta.json, which is
added to each of the output files.

3.2.2 Linking Voter Ethereum Addresses and Voter Identities
The Ethereum addresses and the real identity must be linked together in a way that preserves
the privacy of the voters so that votes later can’t be assigned to individual voters. The reason
why the identities of the voters and Ethereum addresses must be linked together is that the
admins need to be able to know that the Ethereum addresses they are going to add and
approve as voters are the Ethereum addresses that belong to the voters in the users.json file.
If the admins wouldn’t have a way to know if the voters and Ethereum addresses correspond

11 https://en.wikipedia.org/wiki/Cryptographic_nonce

Figure 10 Hash tree of the registration app's outputs

22 |

to each other and the output of the registration app wouldn’t be hashed and signed, it would
be possible for a rogue registrar to swap out the file containing the legitimate Ethereum
addresses of the voters, with a file only containing Ethereum addresses the rogue registrar has
access to, before the file with the Ethereum addresses is sent to the chairpeople which would
then add the compromised Ethereum addresses as voters.

The registration app prevents this exploit by first hashing the file containing the users and the
file containing the addresses separately, and then hashing the hashes of those files together.
This combined hash of the hashes of the two files links the two files together: When an admin
receives a user and addresses file, they can calculate the hash of the two hashes of the files
with the help of the CLI tool and compare it to the signed version of the combined hash in a
file called “meta file” to check if the voter identities and the Ethereum addresses belong
together. This also guarantees voter privacy, because a single Ethereum address cannot be
assigned to a single voter, only all the voters can be assigned to all the Ethereum addresses.
The verification hashes of course not only link the users.json and addresses.json files together
but all the output files of the registration app.

3.3 Division of Power
Much like in a state of law, there is a division of powers in the smart contract among three
admin levels. The goal of the division of power among the admin groups is to provide for
checks between the groups and prevent the concentration of unchecked power, which could
potentially be abused by some of the admins. In this chapter, the security measures that are
part of or related to the division of power will be shown.

3.3.1 Two-Thirds Majority Logic
The contract requires a two-thirds majority of the electoral board, chairpeople or chairpeople
and registrars combined to successfully execute some important actions, like approving polls
or adding and removing admins. The two-thirds majority should prevent a concentration of
power inside the admin group and the abuse of power by individual admins.

3.3.2 Two-Thirds Request Cooldown
After an admin creates a new two-thirds request, there is a 5-minute cooldown, during which
the same admin can’t create a new two-thirds request. Because only one two-thirds request
can be open at a time, an open two-thirds request will be overwritten when a new one is
created. The cooldown is a security measure that should prevent a rogue admin or an
unauthorized person that has gained access to an admin account, from blocking all the two-
thirds requests that should remove their account from the admins or from blocking any other
action that requires a two-thirds request, by constantly creating new two-thirds requests that
overwrite the request that is currently open.

3.3.3 Complete Admins
For the admins to be able to execute functions only they have access to, their admin group
needs to be complete. This forces the admins to always be complete to effectively use the
contract and conduct elections. Only one admin can be missing of all the admins when the
admins are being updated, meaning that at any time when an admin is missing, the admin
group that needs to add a new admin to the incomplete admin group, is complete and can do
so.

23 |

3.3.4 Checks and Approvals
Before a poll can start, first the voters and then the entire poll needs to be reviewed and
approved. In these approvals, one admin type always reviews and approves the work of a
different admin type. The poll is created by the chairpeople and the voter accounts then are
generated by the registrars, which then are reviewed and approved by the chairpeople. After
that, the whole poll is reviewed and approved by the electoral board.

3.4 Anonymity
The voting system provides voter anonymity by using Ethereum addresses that are not linked
to the voters’ personalities. To ensure that the Ethereum addresses aren’t linked to the voters’
real identities during account creation, the voters and their Ethereum addresses are split from
one another, and the addresses are then randomly mixed before being saved. Additionally, the
mnemonic that is necessary to login to the voting app and to derive the Ethereum address and
the Ethereum private key is split, which also ensures that the votes can’t be linked to the
voters’ real identities to ensure the anonymity of the voters and it also improves security.

The registration app splits the mnemonic into two parts. The full mnemonic consists of 12
words, which is split in the middle into two times 6 words. The first access letter receives the
first 6 words and the second access letter the last 6 words. The access letters are then sent to
two different facilities for printing. One facility prints and distributes the first access letters,
and the other facility prints and distributes the second access letters.

The reason why the mnemonic gets split into two parts is that in the case someone
unauthorized gets hold of one of the access letters, they won’t be able to vote on the poll
because to do so, they would need both parts of the mnemonic and thus both access letters.
This is similar to how credit cards and their pins are sent in separate letters because it provides
additional security.

This shuffling and splitting happening inside the registration app is visualized in the following
graphic. Note that this graphic only shows shortened Ethereum addresses and 4 words as
mnemonics instead of 12 words to keep it simple. It also doesn’t include the process of
generating verification hashes and doesn’t show the users.json file as an output. After the
graphic, there is also an overview showing the linking status of the voter addresses, voter
mnemonics and the voters’ personal details (name, physical address, etc) and an overview of
who can obtain which data (Data Access) at every stage of the access letter and Ethereum
address generation in the registration app.

24 |

Figure 11 Ethereum address shuffling and mnemonic splitting inside the registration app

25 |

Stage 1: Registration App Input

To start the generation of Ethereum accounts (mnemonics and addresses), the registration app
first needs a CSV file containing the voters’ personal details.

Linking Status Data Access
At this point, there aren’t any mnemonics or
addresses that could be linked to a voter.

• Voter Personal Details:
o Poll Organizers
o Registrars

• Addresses: Don't exist yet
• Mnemonics: Don’t exist yet

Stage 2: Generated Accounts

A mnemonic and an Ethereum address have been generated for every voter.

Linking Status Data Access
At this point, the personal voter details,
mnemonics and Ethereum addresses are all
linked together internally in the registration
app.

• Voter Personal Details:
o Poll Organizers
o Registrars
o Registration App (internal

access)
• Addresses:

o Registration App (internal
access12)

• Mnemonics:
o Registration App (internal

access)

Stage 3: After Address Shuffling

At this stage the addresses have been internally (in the registration app) separated from the
personal voter details and their order has been shuffled.

Linking Status Data Access
At this point, the Ethereum addresses aren’t
directly linked to the mnemonics and
personal voter details anymore (inside the
registration app). However, the full
mnemonics are still linked to the personal
voter details and the mnemonics can be used
to derive the Ethereum address of a voter,
which means that the addresses are still
indirectly linked to the personal voter details.
The shuffling of the Ethereum addresses
prevents people from being able to associate
Ethereum addresses to voters, if they have,

• Voter Personal Details:
o Poll Organizers
o Registrars
o Registration App (internal

access)
• Ethereum Addresses:

o Registration App (internal
access)

• Mnemonics:
o Registration App (internal

access)

12 Although this data can only be internally accessed by the registration app, it is theoretically possible
for the people involved in the process to gain access to this data by hacking the computer that is used.
This is prevented by multiple people being present during the account generation process and by
handling the device that is used to generate the voter accounts securely.

26 |

or manage to obtain, access to a file
containing the personal voter details.

Stage 4: After Mnemonic Splitting

At this stage, the 12-word (4-letter in the graphic above) mnemonics have been split in half
and internally distributed to two different access letter files for every voter. Additionally, the
addresses have been saved to a file called addresses.json.

Linking Status Data Access
At this point, the Ethereum addresses aren’t
linked to the personal voter details anymore
and due to the mnemonic splitting, only half
of a mnemonic at a time is associated with
the personal voter details, which is
insufficient to derive the Ethereum address
and be able to associate a voter with an
address. Note that both parts of a mnemonic
are currently internally stored by the
registration app. If someone hacks into the
computer used to generate the voter
accounts and manages to steal both parts of
the mnemonic from a voter, they can use this
data to derive their public address. This is
prevented by multiple people being present
during the account generation and by
securely handling the computer used for the
process.

• Voter Personal Details:
o Poll Organizers
o Registrars
o Registration App (internal

access)
• Ethereum Addresses:

o Registrars
o Registration App (indirect

internal access)
• Mnemonics:

o Registration App (internal
access, but mnemonics are
internally separated)

Stage 5: Output Encryption13

To securely transmit the mnemonics to the two independent printing facilities, the file one.zip,
which contains the first halves of the voters’ mnemonics, is encrypted with the public key of
the first printing facility (printer one), which means that only printer one can decrypt the files
with their private key. The same is done for two.zip, but instead of using printer one and its
keys, a different printer (printer two) and its keys are used.

Linking Status Data Access
At this point, the Ethereum addresses aren’t
linked to the personal voter details anymore
and due to the mnemonic splitting, only half
of a mnemonic at a time is associated with
the personal voter details, which is
insufficient to derive the Ethereum address
and be able to associate a voter with an
address. Because each half of a mnemonic
has been encrypted with a different public
key, the issue of someone hacking into the
computer used to generate the accounts,

• Voter Personal Details:
o Poll Organizers
o Registrars
o Printers (postal address)

• Ethereum Addresses:
o Registrars

• Mnemonics:
o Printer One (access to the

first half)
o Printer Two (access to the

second half)

13 Stage 5 only takes place in a production deployment. It is not implemented in the current version of
the voting system. In the current version, the files one.zip and two.zip are saved without encryption.

27 |

wouldn’t allow them to associate voters with
addresses anymore from here on.

After Stage 5: Rest of the Voting Process

After stage 5, the printers print the access letters with the mnemonics and send them to the
voters. Furthermore, the voter addresses are first given to the electoral board and chairpeople
and then published on the smart contract, where anyone can access them. The voters’ personal
details are also distributed to the other electoral board and chairpeople for verification
purposes.

Linking Status Data Access
Because of the shuffling of the Ethereum
addresses, people with access to a list with
the voters’ personal details can’t associate a
single address with a single voter. The only
people that have access to the full mnemonic,
which is necessary to derive the public
Ethereum address, are the individual voters.
This means that the voters are the only
people who can associate an Ethereum
address with their own identity.

• Voter Personal Details:
o Poll Organizers
o Voting System Administrators
o (Printers should have deleted

them, but the voting system
still works if this isn’t done)

• Ethereum Addresses:
o Publicly Accessible to Anyone

• Mnemonics:
o (Printers should delete their

halves of the mnemonic after
printing, but the system still
works if this isn’t done, as
long as the printers don’t
collaborate)

o Voters (have access to their
own mnemonic)

3.5 Preventing Replay Attacks14 in Meta Transactions
In the voting system, two points could theoretically be attacked by replay attacks. The first
point that could theoretically be attacked is the meta transaction. If an Ethereum account
would be reused as a voter account across multiple instances of the e-vote contract that could
potentially be deployed on a blockchain, someone could get hold of the voter’s vote and
signature that they cast on a poll on contract A. This bad actor could then use the vote the
voter cast on contract A and also cast it on contract B because the signature would still be
accepted. To prevent this, the contract's address is included in the signed transaction that
casts the vote, so the signature is only valid on the smart contract the vote was meant for. To
prevent replay attacks of votes between polls in the same contract, the poll id is also included
in the signed transaction, so that a vote is only valid on the poll it was originally meant for.
Together the smart contract address and the poll id act as a nonce inside the signed transaction
to prevent replay attacks. The second point that could be attacked is the verification hashes,
which we already looked at in the Verification Hashes chapter.

14 https://en.wikipedia.org/wiki/Replay_attack

28 |

3.6 Preventing eligible Voters from not being able to vote
Some e-voting schemes that rely on blind signatures have a high risk of being targeted by an
attack that allows adversaries to prevent eligible voters from casting their votes. This voting
system is not susceptible to attacks that can lead to eligible voters being prevented from
casting their votes. The only way the voting system, in this case, the smart contract to be more
precise, prevents an eligible from casting their vote on a currently open poll is if the vote for
the current poll has already been received on the smart contract from the voter. This is only
possible if the smart contract receives a vote that is signed by the voter’s Ethereum private
key directly. This means that an adversary can’t prevent an eligible voter from voting unless a
voter’s Ethereum private key gets compromised.15

4 Process
This chapter covers the process of planning the system’s design and writing the code of the
different components, the major problems I encountered during the process and how I fixed
them. It also covers the research I did to learn about decentralized applications, solidity and
the blockchain.

4.1 Time Planning
I made my original time plan in Jira Software, which is a tool for planning software projects
and keeping track of tasks and bugs. Because I did not know in advance how much time I
would have available every week, I decided to make a broad time plan that did not contain
fixed planned tasks for every week, but instead, I planned periods for every software
component, during which the first version of the entire software component should be written
and finished at the end of it. This made me more flexible and didn’t require me to always
update my time plan, which would have been the case if I had planned multiple smaller goals
and steps that were supposed to be done at fixed dates.

Figure 12 Screenshot of Jira Software's roadmap view with some of the major tasks

I wrote the first version of the registration app during spring vacation 2021. I started with the
registration app because it is mostly independent of the other software components and the
rest of the system’s design wasn’t complete back then. Also during spring vacation, I finished
most of the design the final system should have.

15 It is assumed that the system is not susceptible to denial-of-service attacks

29 |

During summer vacation I first wrote the smart contract because it is the core component of
the system and to start working on the other software components, I first needed the ABI16 of
the finished smart contract.

At the end of summer vacation, I needed to do a significant reschedule, where I swapped the
order in which the admin app, voting app and the CLI tool should be finished. Originally, I
planned to first write the voting app, then the admin app and finally the CLI tool, which turned
out to be a mistake, because to be able to test the software, the components needed to be
written in reversed order than originally planned, which is also the order in which they are
necessary during the election process.

I wrote the CLI tool, admin app and voting app between summer vacation and autumn vacation
and made some refinements to all three during autumn vacation. It was also during autumn
vacation when I decided not to use the Gas Station Network17 (GSN) for meta transactions but
instead write my own relay. Writing the relay itself was not a big deal, however, the smart
contract and the voting app also needed to be updated to support meta transactions.

After I finished most of the software and started the writing process, I used Notion18 instead
of Jira Software for time planning. This is because Jira Software is primarily for planning
software projects and keeping track of software-related tasks and bugs that need to be
addressed.

4.2 Research
When I started working on this paper, I didn’t know much about decentralized applications, let
alone the programming of smart contracts. To get started, I first read the definitions and
explanations of smart contracts and dapps on the official Ethereum website19 to learn more
about them. On their website I also found a link to a “Learn by coding” tutorial called Crypto
Zombies20, where you learn to build a Zombie game that runs on a smart contract. The tutorial
was a lot of fun and it taught me the basics of solidity, but I was still missing a lot of
knowledge, especially regarding how to set up a development environment on my laptop.

I searched the web for books about smart contracts and dapp development and read some
reviews and then decided to buy three books. The first book that I purchased was “Building
Ethereum Dapps” by Roberto Infante. I liked the book because it not only covers how to write
smart contracts and how to set up a development environment but also covers how the
Ethereum blockchain works and what benefits decentralized applications have. However, since
the book was written in 2019 there were a lot of changes made to the solidity programming
language and some of the tools that were used in the book have since been deprecated. During
the coding process of the smart contract, I mostly relied on this book and the official solidity
documentation21. When I got stuck, I often used the Ethereum stack exchange22 or Medium23
articles to find a solution to my problem.

16 https://en.wikipedia.org/wiki/Application_binary_interface
17 https://opengsn.org/
18 https://notion.so
19 https://ethereum.org
20 https://cryptozombies.io/
21 https://docs.soliditylang.org/
22 https://ethereum.stackexchange.com/
23 https://medium.com/

30 |

The other two books that I bought were “Ethereum for Web Developers” by Santiago Palladino
and “Blockchain in Action” by Bina Ramamurthy. I primarily relied on Roberto Infante’s book
because the information it contains about writing smart contracts are the best in my opinion,
which is why I didn’t use the other two books as much. I primarily used them for advanced
reading and learning more about topics like meta transactions or distributed storage solutions
like IPFS24.

4.3 System Design Problems
This chapter covers the two major problems I ran into while designing the system. The first
problem was where the votes should be stored and the second problem was how the voters’
transaction fees that occur when casting a vote should be paid.

4.3.1 Storing the Votes
The first major problem I ran into when planning the system was how the votes should be
stored. The obvious first thought I had was to store the votes directly in the contract’s state.
But this approach had one big problem: Storing data on the blockchain is very expensive,
especially when it’s a lot of data. To solve this problem, I worked out three possible solutions.
The first solution was to store the votes centrally on a server. This solution would have taken
away some of the key features and benefits of a decentralized voting system, which is
transparency and the security given through the blockchain and decentralisation and would
have resulted in the system being quite similar to a traditional voting system. The second
solution was not to use a blockchain to store the votes but instead distributed storage like
IPFS. This solution was good because transparency and some of the benefits of decentralisation
would still be given to a certain extent, while not costing as much as storing the data on the
blockchain. The third solution however was even better. In this solution, the votes are stored
in the smart contract’s event logs, which is a lot cheaper than storing it directly in the contract’s
state and it doesn’t decrease the security of the voting system, because even though logs
aren’t part of the blockchain per se but instead stored alongside the blockchain, they are part
of the transaction receipts whose hashes are stored within the blocks of the blockchain, which
makes it possible to verify the integrity of the votes when they are stored in the event logs.25
This option also keeps the system transparent and maintains all the benefits of decentralisation
and the blockchain. Storing data in events is cheaper because the state of the smart contract
isn’t changed, also meaning that the data can’t later be directly accessed by the smart
contract.

4.3.2 Paying the Voters’ Transaction Fees
On Ethereum every user needs to have sufficient funds (Ether) on their account if they want to
execute state-changing functions on contracts, like the voting system’s smart contract. This is
necessary to cover the transaction fee.

This is a problem for the voting system because it means that voters would need to pay money
to buy Ether to cast their vote. For one, you can’t require people to pay with their own money
to vote on an election and you also can’t trust an average citizen to know how to buy Ether
and transfer it to their e-voting account. One option to avoid this problem would be to send
the Ether required to cast the vote to the accounts of the voters, so they don’t need to use
their own money to buy Ether, however, this option has some major flaws. Gas prices can
change from one second to another, which means that some voters might not be able to cast

24 https://ipfs.io
25 https://docs.soliditylang.org/en/v0.8.19/contracts.html#events

31 |

their vote, because of too high gas prices. Most voters will only need some of the Ether to cast
their vote if gas prices are low when they cast their vote, which means that more money would
be spent by the election organizer than necessary. Another problem is that some voters could
exchange the Ether for real money instead of using it to vote and the Ether sent to voter
accounts that won’t be used will often be permanently lost.

For the reasons stated above, the option of sending the Ether to voter accounts, would be very
expensive and inefficient and not feasible for the voting system.

After searching for some time and comparing different options, I found another way for users
to interact with smart contracts, without having to pay for their own transactions and it is
called “meta transactions”. The way how a meta transaction works is, that the voter hashes
the transaction and then uses their account’s private key to sign the hash of the transaction,
generating a signature. The signature and the transaction, which are now referred to as the
meta transaction, are then sent to a relay, which uses an Ethereum account with enough funds
on it to create and pay for a new transaction that contains the meta transaction. When a
contract receives the transaction, the contract can verify that the meta transaction has been
sent by the original user. To do this, the contract hashes the transaction’s contents (which are
the poll id, the vote hash, the voter’s address and the encrypted vote) together with the smart
contract's address and then uses this data together with the signature that is included in the
meta transaction to recover the Ethereum address that signed the meta transaction. The smart
contract then checks if this recovered address corresponds to the original sender’s Ethereum
address. If this is the case, the contract executes the requested function, which may be a
money transfer, or like in our case, the casting of a vote.

There are multiple ways to implement meta transactions in a smart contract. One project is
the Gas Station Network (GSN), which is a global network of relays that allows any contract
to implement meta transactions.

I chose not to use the GSN and instead wrote my own relay. This was for a couple of reasons.
I only needed to use meta transactions for one function and implementing GSN support into
the project would have been rather complicated and time-consuming. Also, the GSN isn’t
available on all Ethereum based blockchains, which would have made me less flexible in
choosing a blockchain to deploy the smart contract to.

4.4 Coding
For all the components of the voting system, I used git as the versioning tool and Bitbucket26
as a remote. To keep track of the issues I was currently working on and for time planning, I
used Jira Software27, which also nicely integrates with Bitbucket. I used visual studio code28 as
my primary code editor. This chapter shows the process within the different software
components, the major problems I encountered and how I fixed them.

4.4.1 Registration App
When I started working on the registration app, I was still fine-tuning the final design of the
voting system. I wasn’t sure whether it should be a web app or a desktop application. I decided

26 https://bitbucket.org
27 https://www.atlassian.com/software/jira
28 https://code.visualstudio.com

32 |

to start working on a web application that has a react29 frontend and an express30 server as a
backend because this setup could easily be converted to a desktop app at a later point. To
create the react app I used Create-React-App31. Another important package was react router32,
which I used for client-side routing, and reactstrap33 to bootstrap the frontend’s user interface.

After having finished the frontend and the server, I also finished designing the system and
concluded that for security reasons it makes more sense for the registration app to be a desktop
application. This is because it is more secure when the voter accounts are generated on an
offline computer. I created the required files and installed the necessary packages to make the
project work with electron34, which allows building cross-platform desktop apps with
JavaScript. At this point, the frontend of the electron app still communicated with the backend
over HTTP, which is neither very effective nor very secure. Electron has a feature called inter-
process communication, which allows the frontend to directly communicate with the backend,
which I decided to implement. Besides inter-process communication, I also needed to make
some other small changes to make the app work with electron, like using electron’s API to
store temporary data. After having finished this first version of the registration app, I made
the code more readable and created a build of the registration app for macOS.

Later I came back to make some bug fixes and improvements to the registration app. This
most notably included fixing a bug that used wrong data types to create a hash tree of the
application’s outputs and adding a nonce to the outputs. I also added the feature to specify a
custom poll description and the option to add a link to the voting website that aren’t hardcoded
and will be printed on the access letters.

When I finally wanted to build the app for Linux using the electron-forge35 build and packaging
tool, the packager always failed with an error. I tried to fix the error returned by electron-forge
but without success. I then tried electron-packager36 as the build tool, along with electron-
installer-debian37 for packaging, which worked without any problems.

4.4.2 Smart Contract
I used the truffle framework to build and test the smart contract. For testing, I additionally
used a mock blockchain called ganache38, which mocks the behaviour of a real blockchain but
runs locally, processes transactions almost instantly and allows the developer to easily
customize most of the blockchain’s settings.

Before starting to work on the smart contract, I created a checklist with multiple small steps
that I wanted to follow during the coding process. Every step also included a series of
automated tests which I was going to write in JavaScript using the mocha39 test framework
which is built into truffle.

29 https://reactjs.org
30 https://expressjs.com
31 https://create-react-app.dev/
32 https://reactrouter.com/
33 https://reactstrap.github.io/
34 https://www.electronjs.org
35 https://www.electronforge.io/
36 https://github.com/electron/electron-packager
37 https://www.npmjs.com/package/electron-installer-debian
38 https://trufflesuite.com/ganache/
39 https://mochajs.org/

33 |

For the first steps, I followed my checklist as planned and wrote a series of automated tests
after every step to make sure my code worked. However, I quickly realized that my procedure
wasn’t very efficient. I usually spent about 3 times as much time writing the tests as actually
writing the smart contract code, because the tests often needed to be adapted after every
step, which took a lot of time. So I decided to stop updating the automated tests after every
step and only write them when a feature of the contract is finished. After introducing this
change, I progressed a lot faster than before.

I continued to follow my steps in order and manually tested the code after each step, but I
decided to skip 2 of the steps and complete them later.

The first step that I skipped, was the implementation of the code inside the function that
verifies that the hash tree and the signatures of the verification hashes are correct. I initially
wrote the code, but I couldn’t get it to work properly because the smart contract’s function
returned different results for the recovered signatures and the calculated hashes than the
registration app, so I decided to leave it and come back to it later. When I later returned to
the code and tinkered with it for a while, I realised that the code inside the smart contract
worked correctly and the code in the registration app was incorrect. The registration app
calculated the hash of two hashes using string as a data type, but the data type of the hashes
inside the smart contract is bytes32. I updated the function that creates the hash of two hashes
and the signatures inside the registration app, so it converts the input hashes to bytes32 before
hashing and creating the signatures.

The second step that I skipped was the implementation of Gas Station Network support. The
reason why I skipped it and how I fixed the issue that arose with it, was already shown in the
chapter Paying the Voters’ Transaction Fees.

During the coding process, I decided to divide the contract into 3 smaller contracts in separate
files. The contracts are connected through an inheritance chain. The highest contract in the
chain is the TwoThirdMajority contract that stores all the data and contains all the logic that
is necessary for the two-thirds majority logic to work. It doesn’t inherit from another contract.
The second contract is the Admin contract which inherits from the TwoThirdMajority contract,
whose code it requires to create admin add and removal requests. It stores the different
admins, contains all the logic to add and remove admins and has modifiers that restrict access
of some functions to certain admin levels. The last contract in the inheritance chain is the Evote
contract and it inherits the Admin contract. The Evote contract stores all the data related to
polls and contains all the code that is related to polls, like creating a new poll, adding
verification hashes, casting votes, or counting votes.

After having finished all the steps, excluding the ones that were skipped, I started working on
the test cases. I wrote 3 different files containing tests. The first file tests all the modifiers
inside the Admin and Evote contract. The second file tests all the code inside the Admin
contract excluding the modifiers and the third one tests all the code inside the Evote contract.
The code inside the TwoThirdMajority is tested inside the tests of the Evote and the Admin
contract because its core functions are private and only internally accessed inside the code of
the Evote and the Admin contract.

The tests inside the individual test files are grouped into bigger groups and then often inside
those groups again into smaller groups. I tried to write at least one positive and one negative
test for each function and modifier of the contract.

34 |

When I first started writing the tests, I didn’t know a good way to test time-dependent logic.
Because of this, I first didn’t write any tests concerning the parts of the smart contract that
are responsible for time and commented the corresponding lines in the contract out, so I could
finish writing the other tests. After some googling, I found a very good medium article about
time-dependent tests in truffle by Paul Razvan Berg40, which helped me solve the issue by
changing the block timestamps.

After running the automated tests, I deployed an instance of the contract to the Ropsten test
blockchain, so I could manually test it along with the admin app, the voting app and the CLI
tool. Later when I completed the smart contract development steps that I skipped in the
beginning, I updated the tests accordingly to also test the new code. I also added CircleCI41
support to automatically test the smart contract’s code when a new version is committed to
Bitbucket.

4.4.3 Admin App
I wrote the admin app with react and created the project using Create-React-App. The most
important packages I used besides react, were ethers42 for communication with the smart
contract, react router for client-side routing and reactstrap for bootstrapping the user interface
of the app.

To manage the Ethereum private keys of the admins that interact with the contract, I decided
to use Metamask43. Metamask is a browser extension that makes Ethereum account
management easier because the private key only needs to be entered once. Metamask injects
a web3 provider in the browser window which then is used by the admin app to make
transactions and read data from the blockchain. In development, Metamask is especially useful
because it can store multiple Ethereum accounts and allows to switch between them.

I started with writing the login component and logic of the admin app and afterwards started
working on the poll overview page, the create new poll page and the poll detail view. After
having finished the components related to the polls, I moved on to the admin page. While
writing the first version of the project, my goal was to make the app work at its core and leave
out some less important features like automatic page reloads when data on the smart contract
is updated.

Later when I returned to the admin app to make some improvements, there was one issue in
particular, I wanted to fix. When I wrote the first version of the admin app, every major
component had its own code that communicated directly with the smart contract to get the
data it requires. This meant that the app got the same data multiple times because different
components requested the same data. Also, the code that logs the user in was spread over
two components. I wrote two custom hooks44 to tackle these problems. The first hook is called
useUserManagement and it contains all the code that is responsible for logging admins in and
out and getting the admin’s user level. In its state, it also stores the ethers contract instance
to communicate with the smart contract, whether the user is logged in or not and the user’s
level. The second custom hook is called useDataCenter and it is responsible for getting and
storing data related to the smart contract. It depends on the data from the

40 (Berg, 2019)
41 https://circleci.com
42 https://docs.ethers.io/
43 https://metamask.io
44 https://reactjs.org/docs/hooks-intro.html

35 |

useUserManagement hook, which it requires to be successfully initialized. Both hooks are
initialized in the App.js component and made available to all child components through the
application’s context. All the components are now able to get their data from the same source.
Inside the custom hooks, I also added listeners for events emitted by the smart contract, so
the user interface can then refresh itself with the updated data.

To make the code of the hooks and the components cleaner and easier to understand, I
extracted parts of the code into individual files. This way components can also share code,
reducing the overall code size.

Since I was already familiar with react, I didn’t encounter any major problems, except that I
often had to search the ethers API documentation, because I used ethers for the first time.

4.4.4 Voting App
I wrote the voting app with react and created the project using Create-React-App. Like in the
admin app, the most important packages I used besides react, were ethers for communication
with the smart contract, react router for client-side routing and reactstrap for bootstrapping
the user interface of the app.

Unlike in the admin app where the admins need to install Metamask to log in to the app, the
voters can directly login using the poll id and the mnemonic. This is because it is impractical
to require every voter to install Metamask and it also can’t be expected from every voter to
correctly install Metamask. Also, the voters don’t need to access the application as often as
the admins, which is why it doesn’t make sense for the voters to use an account management
tool.

I first started working on the login component and logic and then moved on to the vote casting
page and verify vote page. Finally, I also wrote a small component that allows the voters to
scan the QR codes on their access letters to log in, so they don’t have to enter their credentials
manually. Like in the admin app I focused on making the voting app work at its core in the
first version, leaving away all less important features.

When I came back to the voting app to make some improvements, I decided to create a custom
hook like in the admin app. Unlike in the admin app, I only created one hook instead of two
hooks, because the voting app needs to store fewer data and do less communication with the
contract than the admin app. Most of the application’s code that communicates with the smart
contract, like logging in or getting the poll details, is in this custom hook called useVoteCenter.
The hook also stores most of the application’s state concerning data related to the poll or the
voter. The instance of the useVoteCenter hook is in the App.js component and made available
to all child components through the application’s context. Code that does tasks like generating
the meta transaction and getting the poll, were extracted from the hook to multiple separate
files in a utils folder. This makes the code inside the hook cleaner and easier to understand.

Because I used the same technologies as in the admin app which I wrote before the voting
app, I didn’t encounter a lot of major problems. The only major problem I ran into was that
the QR code scanning feature at first didn’t work on smartphones. The problem was that mobile
browsers require a different content security policy to access the camera than desktop
browsers. To fix the problem, I needed to change the content security policy of the server that
hosts the voting app, not the code of the voting app itself.

36 |

4.4.5 CLI Tool
The reason why I didn’t make the CLI tool a web application, was because the application
needs to be able to run offline for security reasons (RSA key generation and Ethereum account
generation should be done offline), which makes it impractical to use a web app. The reason
why I then didn’t make it a desktop app was because it would take a lot more time than a
simple CLI tool and I didn’t know if I had enough time left to build a desktop app.

After having decided to make it a CLI tool, I searched for JavaScript frameworks that make it
easier to build CLI tools and found one called INK45. I decided to use INK because it allows me
to use react to build interactive command-line tools.

I first created a menu that allows the user to choose between the different actions of the CLI
tool and then proceeded to write the different components and functions of the tool. I usually
tried to include the functionality inside the different app components, as long as it wasn’t too
complex. But if this was the case, I extracted the code to a separate JavaScript file which I
then imported inside the component.

When I was writing the first version of the CLI tool, I left the feature away for later that verifies
the verification hashes and their signatures by comparing it to the data stored on the
blockchain because the code in the smart contract that is responsible for verifying and storing
the verification hashes wasn’t finished yet. After I finished the responsible code on the smart
contract, I came back to the CLI tool to add the code that compares the verification hashes
and the registrars recovered from the signatures with the smart contract.

4.4.6 Relay Server
The relay server is written in JavaScript and runs on NodeJS. I used the ethers package to
communicate with the smart contract and express to run the webserver.

The relay server wasn’t a part of the e-voting system when I initially designed it. The reason
why the relay server is necessary is that the voters’ transactions for casting their votes can’t
be paid by the voter accounts themselves. First, I determined the structure of the meta
transactions for my project, which looks like this:

const metaTransaction = {
 transaction: {
 contractAddress, // the address of the eVote smart contract
 pollID, // the id of the poll that is voted on
 voteHash, // the hash of the vote
 encryptedVote, // the encrypted vote
 voter, // the voter's address
 },
 signature // the voter's signature of the transaction’s hash
}
Listing 4 Structure of a meta transaction

The meta transaction is generated in the voting app and the relay then receives the meta
transaction via an HTTPS request. The code inside the relay server is very simple. The relay
first extracts the details of the meta transaction from the HTTPS request’s body. Then the relay
verifies if the transaction is meant for the same smart contract it is programmed to relay

45 https://github.com/vadimdemedes/ink

37 |

transactions to. To verify if the meta transaction is correct, it uses ethers’ estimateGas function,
which runs the vote function of the smart contract with the contents from the meta transaction
as parameters on one of the web3 provider’s Ethereum nodes to estimate the gas required,
but without actually making a transaction. If the gas required can successfully be estimated,
this means that the transaction will not revert, and everything should be correct with the meta
transaction. The relay then makes the actual transaction, which requires the payment of a
transaction fee. To make the transaction and to pay for the fees, the relay uses an already
pre-funded Ethereum account.

After writing the relay, I needed to change the code of the smart contract and the voting app
to work with the meta transactions.

The only function on the smart contract that should work with meta transactions is the vote
function, which casts the voters’ votes. To make the function work with meta transactions, only
a few more parameters and a few lines of code inside the function needed to be added, which
recreate the transaction hash from the parameters and recover the signer address from the
signature.

The changes that were necessary to make the voting app compatible with meta transactions
were a bit more complex than the changes necessary in the smart contract. The code that
directly sends the transaction to the smart contract needed to be removed. In its place, I added
code that can generate a meta transaction, which requires the generation of a transaction
hash from the transaction’s parameters and afterwards the creation of a signature for the
transaction hash. The meta transaction then is sent in JSON format in an HTTPS request to the
relay. Finally, the voting app listens for the contract’s EncryptedVote event containing the
details of the meta transaction that were relayed. When it receives the event, the voting app
knows that the vote has been cast successfully.

4.4.7 Final Implementation
After having finished the frontends and the relay server, I wrote an express server to host the
builds of the admin and voting app, and a documentation on how to make an election with
the e-voting system. I also integrated the relay server into this express server. The server also
takes care of the content security policies of the frontends. I also created a docker file for this
server project so it can be run on Kubernetes46.

When I finished writing all the software components, I put them all together into one big project
called evotesystem. Then I added some scripts to this project to automate some of the
repetitive tasks during the setup and build process, that needed to be done manually before,
like distributing configuration files, moving the builds from the admin and voting app to the
server or installing npm packages in all the projects. This made it a lot easier and faster to
have an instance of the e-voting system fully running for testing.

5 Product
This chapter focuses on the final product. A more detailed and technical overview of the admin
levels, software components and the most important steps will be given. Additionally, the
operating costs of the voting system that arise because of transaction fees will be calculated
and compared between the main Ethereum network and Polygon, an Ethereum based
blockchain. It will also be analysed whether the requirements that have been set out at the

46 https://kubernetes.io

38 |

beginning of the paper in the Requirements chapter have been reached or not. Finally, there
will also be shown possible improvements that could be made in a future version of the voting
system.

5.1 Pictures
To show how the different apps look like, this chapter shows some pictures of the final voting
app, admin app, registration app and CLI tool.

Figure 13 Single poll page of the admin app

Figure 14 Admins page of the admin app

39 |

Figure 15 Poll info page of the registration app

Figure 16 Menu of the CLI tool

40 |

Figure 17 Voter logged in to the voting app has “No” as option selected before submitting their vote

Figure 18 The verify vote page of the voting app after the tallying of the votes

5.2 Technical Overview
This chapter gives an overview of the voting system. It shows and describes all the software
components that are required and the different admin levels and their areas of responsibility.
Important sequences like the process of creating a new poll or user voting will also be shown
and explained.

5.2.1 Admin Levels
The voting system has three different types of admin roles that all have different capabilities
when it comes to holding an election. The reason why there are three different roles is to divide
power between the different groups to provide for checks between the groups and prevent the
concentration of unchecked power.

41 |

5.2.1.1 Registrars
There are 3 registrars, whose duties are to create voter accounts in the registration app and
to add the verification hashes to the smart contract. They can also vote on and start add and
removal requests for electoral board members along with the chairpeople.

5.2.1.2 Chairpeople
There are 3 chairpeople, whose duties are to create new polls and to add, verify and confirm
voters. They can also vote on and start add and removal requests for electoral board members
along with the registrars.

5.2.1.3 Electoral Board
There are 6 electoral board members, whose duty at the beginning of an election is to create
an RSA key pair that will be used to encrypt and decrypt votes. After a poll has been created
and voters confirmed, they have to verify the voters of a poll, make sure that everything is
correct with the poll and then confirm the poll. At the end of the poll, they are responsible for
decrypting the RSA private key and counting the votes. They can also vote on and start add
and removal requests for registrars and chairpeople.

5.2.2 Software Components
This section gives an overview of the different software components of the e-voting system
and describes what they do.

5.2.2.1 Smart Contract
The smart contract is the core component of the
voting system, as it contains the voting logic and
stores all the data. The data that it stores in its state
is the polls and their details, how many votes each
vote option received, the current admins, the
registered voters for each poll and open two-thirds
requests. The encrypted votes are stored in the
contract’s event logs. The smart contract and the
data stored on it can be viewed by anyone. The votes
on the contract are, however, encrypted until the
respective poll reaches tallying time. The admins and
the voters don’t access the smart contract directly,
all the communication happens over the admin app,
voting app, relay or the CLI tool, which use the
contract’s interface to communicate with it. The
smart contract is written in solidity.

5.2.2.2 Admin App
The admin web app allows admins to do administrative tasks by showing them important
information from the smart contract and allowing them to call functions that are restricted to
the admins. It allows the chairpeople to create new polls, add and remove voters and confirm
voters. The registrars can add verification hashes that have been generated in the registration
app and the electoral board can confirm polls to allow voters to vote on them. The admins can
also add and remove admins of the contract by creating add or removal requests for admins.
The app distinguishes between different admin roles by looking up the Ethereum address of
the currently logged-in user and the role associated with it on the smart contract. The app also
displays the admins a list of all polls that have been created and the details of those polls,

Figure 19 Overview of the voting system's
software components

42 |

like the verification hashes, public RSA key, registered voters, cast votes and more. The admin
app is written in HTML, CSS and JavaScript, using the react framework and the help of other
npm packages, the most important ones being ethers for communication with the smart
contract and reactstrap for bootstrapping the UI.

5.2.2.3 Voting App
The main functionality of the voting web app is to allow voters to choose a vote option and
cast their vote. Voters can log into it using the mnemonics they received on their access letters,
either by manually entering them or scanning the QR Codes on the access letters. After having
cast their vote, the voter can also download a receipt47. The details of the vote and other
details like the block number and the transaction hash can be viewed immediately after the
voter cast their vote or anytime later when the voter logs in again with their credentials. Voters
can also check if their vote has already been counted and the app also allows them to verify
their vote receipt.

This vote verification feature can be used if the voter accidentally uses a malicious voting web
application, where the application may tell the voter that it voted for the option the they
intended to vote for, but in the background, it votes for a different option. With individual
verifiability and the help of the vote receipt, a voter can detect if their vote has been maliciously
altered this way. To do so, they have to sign in to a different non-malicious voting app and
use the vote verification feature. If the malicious voting app from before displayed a false vote
to the voter, the non-malicious voting app then will now notice that the vote is incorrect by
recomputing the vote hash from the vote receipt and comparing it to the value stored on the
blockchain.

Like the admin app, the voting app is also written in HTML, CSS and JavaScript. It also uses
the react framework and the ethers and reactstrap packages.

5.2.2.4 Registration App
The registration app is a desktop application that allows registrars to import a list of users in
a CSV file which should receive access to vote on a specific poll and the app then creates
Ethereum accounts for those users. The app then also generates access letters that contain the
mnemonic of the account along with the details of the poll and some additional information.
The Ethereum addresses of the voters’ accounts are saved in a separate file, so they can later
be registered as voters on the smart contract. The app additionally generates a file with the
names and the physical addresses of the voters. In the end, the app hashes all the outputs and
creates a hash tree with them which then is signed by the registrars’ private keys. The hash
tree and the signatures are added to all the output files in a file called meta.json. The
registration app is written in JavaScript using electron. The user interface is made with HTML,
CSS and JavaScript using the react framework and reactstrap among other packages.

5.2.2.5 CLI Tool
The CLI tool allows admins to do multiple things that are necessary to carry out an election.
These things include:

• Creating RSA keys which are necessary to encrypt and decrypt the votes that are cast
• Decrypting RSA private keys

47 The receipt contains the poll id, the vote option id, the salt, the vote string (the poll id, option id and
salt combined in a single string to create the hash of the vote), the hash of the vote, the encrypted vote,
the voter’s signature and the voter’s address.

43 |

• Verifying a meta file
• Counting votes

Additionally, the tool also includes some extra functions which are supposed to help the
admins, but could also be done with external tools:

• Getting the hash of a file
• Creating Ethereum accounts (mnemonic, private key and address) and deriving private

keys and addresses from mnemonics

The CLI tool is written in JavaScript using INK.

5.2.2.6 Relay
The relay forwards the votes of the voters to the smart contract and pays the transaction fee
that arises when casting a vote, so the voters don’t have to bear these costs. It is written in
JavaScript and integrated into the express server that hosts the voting and the admin app.

5.2.3 Initial Contract Deployment
Before a poll can be created on the smart contract or any action executed on the smart
contract, it first needs to be deployed. After the contract has been deployed, the frontends can
also be deployed and the CLI tool set up, which then can interact with the smart contract. To
deploy a new instance of the smart contract, multiple steps need to be taken.

Step 1: Determining the initial admins

The poll organizer determines the people that will be the
initial admins of the smart contract.

Step 2: Admins generate Ethereum accounts

The people that have been appointed as admins now use
the CLI tool’s Generate Ethereum Account function to
generate an Ethereum account for themselves. The CLI tool
will display the admin their mnemonic, Ethereum private key
and address, which they need to write down and store
somewhere safe.

Step 3: Technical staff configures admin file

The admins then hand over their address to the technical
staff, so they can place the addresses of the admins in the
admin configuration file of the evotesystem project, which
contains the addresses that will be used as admins when the
contract is deployed.

Step 4: Technical staff configures the rest of the project

The technical staff configures the other files that are necessary for deployment. This
configuration includes the URL of the node provider that should be used, the name of the
blockchain the smart contract should be deployed to, which account should be used for contract
deployment and which Ethereum account should be used in the relay to pay the transaction
fees. Additionally, there are some other optional configurations the technical staff can make.

Step 5: Technical staff deploys contract

Figure 20 System deployment steps

44 |

After having finished the configuration process, the technical staff deploys the contract to the
desired blockchain.

Step 6: Technical staff builds frontends

After having deployed the contract, the technical staff add the contract’s address to the
contract configuration file. Then they use the CLI tool to distribute the configuration file to the
frontends and to build the frontends.

Step 7: Technical staff deploys frontend.

After having built the frontends, the technical staff deploys the server. The server hosts the
relay, the voting app, the admin app, and, in development, a documentation for the project.

After the deployment of the server, the evotesystem is ready to use.

45 |

5.2.4 Creating a Poll
This section explains in detail the steps that happen when the admins create a new poll. It is
assumed that at this point the organizers of the election already decided what the poll is going
to be about, what the possible vote options are, and which voters should be eligible to vote
on the poll.

Figure 21 Sequence diagram of the poll creation process

Steps 1 and 2: Electoral board creates RSA key pair

To ensure that the votes stay secret until the poll reaches its tally time, the votes need to be
encrypted by an RSA public key. The system uses a 4096-bit RSA key pair. To generate the key

46 |

pair, the electoral board meets and use the CLI tool installed on an offline computer and choose
its Create RSA Keys option. The program will ask where the output should be saved to and
then prompts the electoral board members to enter their Ethereum private keys after another.
No one other than the electoral board member to whom the key belongs must see the key.

The admins’ private keys are used to generate a passphrase which is used to encrypt the RSA
private key. This ensures that the electoral board members can only decrypt the private key
and decrypt and count the votes when all of them enter their Ethereum private key. This should
prevent a rogue electoral board member from encrypting the votes before the election ends.

After the program created the RSA key pair, it saves the public key and the encrypted private
key in pem format to the specified location along with a file called positions.json. This file
contains information about how the passphrase for the RSA private key was generated from
the Ethereum private keys of the electoral board members and it is necessary to decrypt the
private key at the end of the election. Each electoral board member keeps a copy of the
encrypted RSA key and the positions.json file, which they must keep until the election reaches
tallying time and the votes have been counted.

Step 3: Electoral board hands over the public key to the chairpeople

After the electoral board generated the RSA keys, they hand the RSA public key over to the
chairpeople.

Step 4: Chairperson creates a new poll

One chairperson now creates a new poll with the poll name, vote options, opening, closing and
tallying times determined by the poll organizer and the public key received from the electoral
board. The chairperson can also specify a content hash, which can be a hash of the poll
description or a video explaining what the poll is about and allows the voters to be sure that
the description or video is genuine.

Steps 5 to 9: Registrars create voter accounts

After the poll has been created, the registrars can create voter accounts for the poll in the
registration app. For security reasons the computer that is used to generate the voter accounts
must be offline. The registration app requires the registrars to enter the contract address, the
poll id and the poll name before creating the voter accounts. Additionally, the registrars can
also enter a poll description and a voting link, the URL of the website where voters can vote,
which will be printed on the activation letters. After entering the details of the poll, the
registrars need to select the voter table, which contains the details of the voters that should
be registered. This file should be provided to all the admins by the cantonal or communal
authorities. The registration app then generates a 12 word long mnemonic for each user. The
mnemonic then gets split into two, the first half will be on the first activation letter and the
second half on the second activation letter.

Besides the mnemonics, the activation letters also contain the poll id and the name of the poll,
which are also contained in a QR code on the activation letters. The letters also contain the
voter’s address and name and if specified a poll description and voting link.

After the mnemonics and activation letters have been generated, the registrars need to enter
their Ethereum private keys to sign the output and prove its genuinity. The way how the output
is hashed and signed to create verification hashes and how the verification hashes work is
explained in more detail in the Verification Hashes chapter. After the output has been signed,

47 |

the registrars can download the different output files. These output files also include a
users.json file, which contains a list of all the registered voters, and an addresses,json file,
which only contains all the Ethereum addresses of the voters that have been registered.
Additionally, there is a meta.json file that contains the verification hashes, the hash tree
resulting from them, their signatures and other meta-information about the election, such as
the poll id, the poll title and the smart contract’s address.

Steps 10 to 12: Registrars upload verification hashes

One of the registrars uploads the verification hashes and their signatures to the smart contract.
The smart contract then checks if the hash tree is correct and if the signatures of the registrars
are correct.

Step 13: Activation letters to printers

After the verification hashes have been added, the activation letters are sent to the printers.
The printers will only start printing the activation letters once the poll has been confirmed.

Steps 14 and 15: Users to chairpeople and electoral board

The voter details (users.json file) and the voters’ Ethereum addresses (addresses.json file) are
then given to the chairpeople and the electoral board. Any modification or corruption of the
data transferred will be detected in steps 16 to 18.

Step 16 to 18: Chairpeople verify voters

When the chairpeople (and later also the electoral board) receive the voter details and their
Ethereum addresses, they verify that the data they received is correct, by doing the following:

• Making sure that the correct poll id, contract address and poll name are included in
the users.json and addresses.json files.

• Making sure the correct voters have been registered (i.e. making sure the users.json
contain the same voters as the CSV file with the voters that was given to the admins
by the poll organizers)

• Hashing the files, which can be done with the CLI tool, and comparing the hashes to
the meta file.

• Using the CLI tool’s Verify Meta File function, which verifies that the meta files included
with the users and Ethereum addresses are valid. The program does this by checking
if the hash tree is valid, checking the hashes match the ones on the smart contract
which were previously added by the registrars and by verifying the signatures.

Steps 19 and 20: Chairpeople add and confirm voters

If the voter details and the voters’ Ethereum addresses, which the chairpeople received, can
be verified according to steps 16 to 18, one of the chairpeople adds the voters to the poll. Then
the chairpeople open a two-thirds request for voter confirmation, which needs to be approved
by two out of three chairpeople voting on it. After confirming the voters, the poll status will be
updated to voters confirmed.

Steps 21 to 23: Electoral board verifies voters and poll

This is the final review of the poll before it gets confirmed. The electoral board does the same
verification steps that have been done in steps 16 to 18 by the chairpeople. Additionally, they

48 |

verify that everything else with the poll is correct: The poll name, the vote options, the
opening/closing/tallying times and very important, the RSA public key.

Step 24: Electoral board confirms poll

If the electoral board finds everything to be correct, they open a poll confirmation request,
which requires two-thirds of the electoral board members’ votes to pass. After 4 out of the 6
electoral board members voted on it, the poll is confirmed, and voters can start voting on the
poll as soon as the opening time is reached.

5.2.5 User Voting
This chapter explains in detail the steps that happen when a voter votes on a poll. It is assumed
that at this point the poll has already been successfully created with the voters registered, the
poll is open (opening time exceeded but closing time not surpassed) and the voter received
their access letters and has the voting website open.

Step 1: Voter enters credentials

The voter enters their credentials, the
first and the second half of the
mnemonic along with the poll id,
which are all stated on the access
letters. The voter can enter their
credentials either by entering them
manually in a form or by scanning the
two QR codes on the access letters,
which also contain the credentials.
After entering the credentials, the
user clicks the login button.

Steps 2 and 3: Voting app checks if
the voter is eligible to vote

After receiving the credentials, the
voting app first checks if the
mnemonic the voter entered is valid.
After that, the application creates a
provider and a wallet from the
mnemonic, which are used to create
a contract instance. The app then
calls the contract’s viewVoterStatus()
method, which returns either 0,
meaning that the user isn’t registered
to vote, 1, meaning that the user is
registered and hasn’t voted yet, 2,
meaning that the user is registered to
vote but has already voted, or an
error, in the case, that something
went wrong, which is usually the case
when the poll entered by the user doesn’t exist.

Figure 22 Sequence diagram of the user voting process

49 |

If the viewVoterStatus() function returns 0 or an error, the login page is displayed again, but
with an error message.

If the function returns 2 (voter already voted), the voter will be redirected to the verify vote
page, where the voter can view the transaction details of their vote and can verify their vote.

When the user is eligible to vote and 1 is returned, the application will get the poll details from
the smart contract and display the voting page.

Steps 4 to 6: Getting the poll details

When the voter is eligible to vote, the voting app will first get the poll details with the poll id
the user entered at login, using the contract’s idToPoll() function. Most of the information
required is returned by this function, most importantly the poll title, the public RSA key used
to encrypt the voter’s vote later, the opening/closing/tallying dates and times along with the
vote options count. This function, however, does not return the vote options themselves, only
how many of them there are. With the vote options count and the poll id, the contract’s
viewVoteOption() function can be used to get the poll’s vote options. After the voting app
receives the information, it will display them on the voting page to the voter.

Step 7: Voter chooses an option to vote for

The voter now takes their time and chooses an option to vote for. When the voter decided,
they click the submit vote button and a modal dialogue will ask them to confirm their choice.

Step 8: Generating the vote

When the voter clicks the confirm button on the modal, the vote is generated. After the vote is
generated (salt, hashed vote, and encrypted vote are generated. For more details read 3.1.1
above), the application uses the details of the vote to generate a meta transaction.

Step 9: Relaying the vote

The meta transaction generated in the previous step is now sent to a relay. The relay verifies
if the meta transaction contains all the required information if the signature is correct and if
the voter is eligible to vote by test running the vote() function of the smart contract with the
parameters of the meta transaction on a node.

Steps 10 to 12: Casting the vote

If the transaction is valid, the relay uses the contract’s vote() function to cast the vote. To pay
for the transaction fee that arises when casting the vote, the relay will use an Ethereum account
that it was preconfigured with and has enough funds to pay for it. After the relay sent the
transaction to the blockchain, it receives an Ethereum transaction receipt, which it will pass on
to the voting app.

Steps 13 and 14: Listening for vote event

When the voting app receives the confirmation from the relay that the transaction has been
submitted to the blockchain, it starts listening for the contract’s EncryptedVote events, which
are emitted once a vote has been received by the smart contract. When the voting app receives
an EncryptedVote event, containing the voter’s address, the poll’s id, the vote hash and the
encrypted vote that was generated in step 8, it knows that the vote has been cast successfully.

50 |

Step 15: Displaying the success

After receiving the EncryptedVote event, the voting app will display a success message and
other important information regarding the vote to the voter. This information includes the
option the voter voted for, the hash of the vote, the UUID (salt) that was used to generate the
vote and the Ethereum address of the relay that was used to cast the vote. The app also allows
the voter to download all the details of their vote in a chainvote file, so they can completely
verify that their vote has been counted at the end of the poll. The voter can also go to the
verify page, where they can see more details regarding their vote like the transaction details.
There they can also verify their chainvote file and view if their vote has already been counted.

51 |

5.2.6 Counting Votes
After the tally time of a poll has been
reached the electoral board will decrypt
the RSA private key to count the votes.

Phase A: Decrypting the RSA private key

The electoral board members use the CLI
tool’s Decrypt RSA Private Key function (1)
to decrypt the RSA private key. They enter
the file location of the encrypted RSA key
and the positions file (2). Then every
electoral board member needs to enter
their Ethereum private key (3), which is
necessary to generate the passphrase to
decrypt the RSA private key (4). After
encrypting the RSA private key, it gets
saved to the computer (5).

Phase B: Counting the votes

To count the votes of a poll, the electoral
board needs to use the CLI tool’s Count
Votes function (6). First, they need to enter
the private key of an Ethereum account (7)
that has enough funds on it to pay for the
gas costs that arise when counting the
votes. Then they need to specify the id of
the poll (8), whose votes should be
counted. Finally, they need to specify the
path of the decrypted RSA private key (9).

The program will then get all the
encrypted votes from the smart contract’s
event log (10) and will display an overview
(11) to the electoral board, showing how
many votes have already been counted,
how many votes haven’t been counted and
how many votes have an error. Then the
electoral board can proceed to decrypt the
votes (12) by hitting enter. After
decrypting the votes (13), the program will
show how many votes it was able to
decrypt (14). Finally, the program submits
the votes (the poll id, the options the
voters voted for and the salts of the votes)
to the smart contract for counting (15 and
16) and displays the status to the electoral
board (17).

Figure 23 Sequence diagram of the vote counting process

52 |

5.3 Operating Costs
As mentioned in Gas and Transaction Fees, it costs money to make transactions on a blockchain
to call a function on a smart contract. These costs are called gas costs or transaction fees and
they depend on the blockchain used, the number of transactions currently being made on the
entire blockchain and the price of the cryptocurrency used to pay the transaction fee.

The cost associated with running an election is an important consideration when choosing a
blockchain to deploy the contract to as a developer and to election organizers when deciding
whether it is feasible to run an election on a blockchain instead of a traditional election, where
the votes are cast via mail or a centralized e-voting system.

To find out how much it would cost to run an entire election with the evotesystem, I calculated
the total amount of transaction fees that occur when running an election with 1000 voters from
start to beginning. I calculated the costs for two different blockchains. For the main Ethereum
blockchain and Polygon, an Ethereum based proof of stake48 blockchain. Because gas fees are
always fluctuating, averages from the last 3 months49 were used.

Action Gas Required
Contract Deployment 5025212
Poll Creation 1038406
Adding Verification Hashes 237723
Adding Voters 27504600
Confirming Voters 258984
Confirming Poll 402502
Casting Votes 86869000
Counting Votes 13667880
Total Units of Gas 135004307

Table 3 Units of gas required to conduct an election

Ethereum Polygon Proof of Stake
Average Gas Price per Unit (GWEI) 116.96150 74.1715224751
Total Gas Cost in GWEI 15790238751 10013474990
Total Gas Cost in the Blockchain’s Currency 15.79023875 ETH 10.01347499 MATIC
Price of the Blockchain’s currency52 (CHF) 3551.52 CHF 1.75 CHF
Total Gas Cost (CHF) 56079.35 CHF 17.52 CHF

Table 4 Gas prices on the different blockchains

In Table 3, you can see the amount of gas that is required for every step of the election process
and in Table 4, you can see the gas costs for the two blockchains.

48 https://en.wikipedia.org/wiki/Proof_of_stake
49 Average gas prices from the 13.9.2021 until the 12.12.2021
50 https://etherscan.io/chart/gasprice
51 https://polygonscan.com/chart/gasprice
52 Prices on the 13.12.2021 from https://coinbase.com

53 |

The total gas cost in GWEI53 is calculated by multiplying the total units of gas times the average
gas price per unit in GWEI. The total gas cost in the blockchain’s currency is calculated by
dividing the total gas costs in GWEI by one billion. The gas fee on Ethereum is paid in Ether,
and the gas fee on Polygon is paid in Matic. To get the total gas cost in Swiss francs, the price
of one unit (1 Ether / 1 Matic) of the blockchain’s currency in Swiss francs is multiplied by the
total gas cost in the blockchain’s currency.

As you can see in Table 4, the cost of running an election on Polygon is much lower than on
the Ethereum main net, where it would probably be too expensive for most organizers to run
an election. On Polygon the transaction fees are much lower, which makes it financially a lot
more appealing than Ethereum. However, this cheaper price of Polygon also comes at a loss
of decentralization and security, which makes it less ideal for governmental elections. There
are a lot of other Ethereum based blockchains, like Arbitrum, Optimism and Avalanche. Some
of which cost more and are more secure, others are cheaper but less secure. It won't be
analyzed which blockchain the smart contract should be deployed to for production because
this is out of the scope of this paper.

It is important to note that in addition to the transaction fees, also the costs of hosting the
servers and the cost of printing the activation letters need to be considered.

5.4 Requirement Analysis
In the Requirements chapter at the beginning of the paper, the requirements the e-voting
system should meet were set out. In this chapter, it is analysed if and to what extent these
requirements have been met.

First, we are going to look at the requirements that were taken from the “Anforderungskatalog
für eidgenössische Volksabstimmungen mit der elektronischen Stimmabgabe”.

Requirement Status Implementation
Requirements
for a basic
permit

Reached • Control of voting rights: Only registered voters can cast
a vote in the voting system. Additionally, there are
security measures (verification hashes) in place that
prevent the malicious modification of voters and voter
accounts.

• Uniqueness of the vote: The system only allows
registered voters to vote and it keeps track of whether a
voter has already voted or not to prevent voters from
voting twice.

• Reliable reproduction of unadulterated will
manifestation: This is prevented by multiple
mechanisms. On the one hand, the unwanted
modification of votes by third parties is prevented by
using encryption, certificates, hashing and signatures. On
the other hand, by using different routes to send the vote
and to verify if the vote has been cast, it can be checked
that votes reached their destination and haven’t been
dropped.

• Secrecy of the vote: A single vote can’t be associated
with a single voter, because of the shuffling of Ethereum

53 1 GWEI is the cryptocurrency divided by a billion. It is used to specify gas prices.

54 |

addresses and splitting of private keys that occur during
voter generation.

Individual
verifiability

Reached The voting system successfully implements individual
verifiability by allowing users to verify if their vote has been
received, recorded- and counted-as-cast at any time in the
voting app. For verification, the voting app locally regenerates
the vote hash of the voter and then compares it to the vote
stored on the blockchain. Voters can also check if their vote has
already been counted or not in the voting app. Alternatively,
voters can also visit Etherscan to verify that their vote has been
received or counted.

Complete
verifiability

Reached Complete verifiability is also successfully implemented in the
voting system. It is in the first place given by the verification
hashes that ensure that the correct voters have been registered
and that data essential to conducting an election hasn’t been
altered by creating hashes of the files containing the eligible
voters, their Ethereum addresses and their access letters. These
hashes are then used to check the integrity of the files and by
creating a hash tree with the hashes, the files can be linked
together which also ensures that files can’t be swapped out.
Then during the voting process, complete verifiability is provided
by the blockchain and the smart contract, which would show
any manipulation attempts made on the election and by design
only allow registered voters to vote only once to prevent ballot-
stuffing. At the end of the election, once the tallying time has
been reached, anyone can recount the votes for themselves
using the RSA private key and the events containing the votes.

User-
friendliness

Mostly
reached

This requirement has been mostly met. Voters can easily log in
with QR codes and the user interface is mostly straightforward,
but there is still room for improvement. An example for this
would be to use a different term than mnemonic that makes
more sense to the general population, like «Access Key» or
«Login Key».

Voters with
disabilities

Not
reached

This requirement has not been completely met. The voting app
can in principle be used with voice control, but for time reasons
the app hasn’t been optimized for screen readers.

Invalid ballots Mostly
reached

This requirement has been partially met. The voting web app
won’t allow the voters to cast an invalid ballot. However, if a
voter for some reason tried to directly send an invalid vote to
the smart contract, the smart contract would accept it, as long
as the vote is cast on an open poll, the voter is registered and
the message signature is correct. This is because the smart
contract can’t access the contents of a vote. After all, it only
receives the vote hashed and encrypted.

Tallying of
the votes

Reached Treating the results of a poll confidentially between decryption
and the publication of the results has been reached. Votes are
encrypted until the election ends and can’t be accessed by
anyone until the electoral board decrypts the RSA private key
and counts the votes at the tallying time. The system is designed
transparently, and the votes are counted publicly, meaning that
the results are publicly available as soon as the votes are
counted. This means that the votes need to be decrypted and

55 |

counted at the determined publication time of the results to
ensure the confidentiality of the results.

Table 5 Requirement analysis of the federal chancellery's catalogue of requirements

Most of these requirements have been completely or mostly met and the remaining
requirements could easily be met with some additional effort.

Now we are going to look at the requirements I set out myself.

Requirement Status Implementation
Usable for
non-
governmental
elections

Mostly
reached

The system can be used without any problems for most non-
governmental elections, where the voters should only be able to
vote for one option and where there should be a maximum of
five options to choose from. However, for elections that aren’t
very important and only have a few voters, 12 required admins
are probably too much. The admin web app only needs a few
lines of modifications to work with less than 12 admins and has
even been partially designed to allow a switch to a single admin
mode, where the smart contract only has one admin. In the
registration app also only a few lines would need to be changed
to achieve this. The smart contract and the CLI tool need more
changes to work with less or only one admin than the admin
web app and the registration app, but the changes could also
be made fast and relatively easy.

Important
data and
logic on the
blockchain

Reached This requirement has also clearly been reached because the
votes, verification hashes, admins and voters are all stored on
the blockchain. The core logic is also on the blockchain, like the
counting and casting of the votes, the confirmation of polls and
voters, the adding and removing of admins and the validation
of the verification hashes.

Table 6 Requirement analysis of the personal requirements

These requirements have also generally been met.

5.5 Possible Improvements
In this chapter, I am going to highlight things I would change in a future version of the project,
regarding the code and the design of the entire voting system

5.5.1 Additional Verification Features for the CLI Tool
The CLI tool currently allows admins to verify the correctness of the meta file, but it can’t
automatically verify if the voter addresses in the addresses.json file have all been correctly
registered as voters on the smart contract. This feature along with the option to automatically
compare multiple of the registration app’s output files’ hashes with the hashes from the meta
file, so the admins don’t need to manually verify if the hashes of the output files match the
hashes inside the meta file, should be implemented in a future version of the voting system.

5.5.2 Improve Central Data Storage in the Admin App
The admin app currently uses a custom hook called useDataCenter which handles most of the
tasks related to getting data from the smart contract, like loading polls, two-thirds requests
and listening for events. However, some of the components still fetch their own data, like the
Voters and Votes component, which directly get the voters and the votes from the blockchain
and not through the custom hook. This is not a major problem since the data is only used in
that component and its children and not across the whole application. But the data is fetched

56 |

again every time the component is remounted, which wouldn’t be the case if the voters and
votes were stored in the custom hook, which is why I would have moved the code that stores
and gets the data in those components to the useDataCenter hook as well if I had had enough
time to do so.

5.5.3 Separation of Servers
Currently, the voting app, the admin app and the relay server run on a single server. This design
works great on a small scale where only a few users access the e-voting system, and it also
makes it easier to quickly test the software and deploy it to a small server for a demo with a
few users. However, it is not suitable for a production environment, where a lot of users need
to use the services, which would be the case in a national election in Switzerland, where
approximately 5.5 million people54 need to access the services to vote.

That is why in a production environment the admin app, the voting app, and the relay would
each be placed in its own express server. Then every server would receive a Docker file, so the
servers can be containerized. The voting app and the relay server containers would then be
deployed to Kubernetes, which will scale the number of containers up and down, depending
on how much traffic is coming in: During an election, the number of containers will be scaled
up because more users are voting and thus traffic is higher. Contrary, when there is no election
ongoing, the number of containers will be scaled down, because only very few people will
access the services. This ensures that services won’t be overloaded and it also minimizes costs.

The admin app wouldn’t be deployed to Kubernetes because a single instance running of the
container is enough because the admins are the only people who need to access it and there
are only 12 of them. Unlike the voting app and the relay, which need to be accessible to the
voters over the internet, the admin app wouldn’t be deployed to publicly accessible servers,
but instead on a server on a local network, which can be accessed with a VPN. This makes it
more secure because among other reasons it prevents the use of DDOS attacks on the server
and makes man in the middle attacks less likely.

Another benefit of the separation and containerisation of the services is, that in case one of
the servers crashes for some reason, the other servers won’t be affected by it and keep running.
If the server in the current setup crashes for some reason, not only one service will be
unavailable, but all of them.

5.5.4 Adding a Zero-Knowledge Proof and reusable Accounts
When a user votes on a poll, the encrypted vote along with some other information including
the user’s address is sent to a relay, which then forwards the user’s vote to the smart contract,
where the vote will be stored, and the user’s account status updated to voted. This means that
a user’s Ethereum address and vote are publicly linked together and can be looked up by
anyone who has access to the blockchain. After the votes have been decrypted and counted,
anyone can look up which Ethereum address voted for what vote option. This prevents the
reuse of addresses and access letters across multiple polls because it would allow the profiling
of the voters.

Here comes the zero-knowledge proof into play. A zero-knowledge proof is a cryptographic
method that allows one party to prove to another party that a given statement is true, without
revealing any information apart from the fact that the statement is true. (Wikipedia, 2021) In
our case, this would mean that a voter could send their encrypted vote along with all the

54 People entitled to vote on national elections in 2020 (Bundesamt für Statistik, 2021)

57 |

required information except the signature and the address of the voter to the smart contract
via the relay, along with a zero-knowledge proof that can prove that the sender of the request
indeed is a voter and hasn’t voted yet. Now the contract would know whether a vote sent to
it is sent from an eligible voter or not, but without ever knowing the address of the voter.

There are already some blockchain projects that use zero-knowledge proofs like z.cash55 and
Aztec56 which allow users to make private transactions.

Using the zero-knowledge proof, voter accounts could be reused across multiple polls, which
means that voters would only need to be registered once for a category of poll (e.g., national
elections) and could then vote on any upcoming polls with their account. This way user
accounts don’t need to be regenerated and registered on the blockchain for every poll, which
saves time and money (transaction fees for adding voters). Voters could also be sent an
inexpensive physical security key/hardware wallet when they are first registered, which would
dramatically increase security compared to using the current approach with generated letters
because no one and no computer except the hardware wallet would ever know the Ethereum
private key. Currently, when the access letters are generated, the Ethereum private key will
first temporarily be stored on the computer that generated them, then temporarily on the
device used to transport it to the printers, then temporarily on the printers and finally on the
device that is used to vote during the user voting process.

The introduction of a zero-knowledge proof would also allow individual polls to be grouped
much like they are on ballots in real political elections. The voters would then receive only one
pair of access letters with one mnemonic, which could be used to vote on multiple polls that
have been grouped. Currently, this is not possible, because it would allow voter-profiling to
some extent.

The reason why I didn’t implement a zero-knowledge proof in my project was that I didn’t
know enough about how zero-knowledge proofs mathematically work and then to run a zero-
knowledge proof in the smart contract, I would have needed to write a lot of code in the Yul
assembly language alongside my solidity code. Learning enough about zero-knowledge proofs,
learning Yul and then implementing a zero-knowledge proof that fits my needs would simply
have taken way too much time.

5.5.5 Hardware Wallets
The CLI tool and the registration app currently require the admins to enter their Ethereum
private keys to do various actions crucial for the voting process, like signing generated voters.
Metamask also requires the admins to import their private key to sign in to and use the admin
app.

This method is for several reasons not very secure:

The admins need to enter their keys correctly for the application to work correctly, them
mistyping the keys might not be obvious at the time and only be realized at a later point in
time, which could lead to having to restart parts of the election process. If a registrar for
example enters a private key in the registration app that is not correct, this will only be realized
once they try to upload the verification hashes to the smart contract and then they need to
regenerate all the voter accounts.

55 https://z.cash/
56 https://aztec.network/

58 |

Even though the CLI tool and the registration app only allow entering one Ethereum private
key at a time, and it is assumed that only the admin that is currently entering the private key
is viewing at the screen, practically there is still the chance that someone unauthorized looks
at the computer’s screen and gets hold of the private key this way. This can for example
happen when a camera is hidden in the room where the admins meet to set up the election. If
someone unauthorized gets access to the private key of a single or even multiple admins, they
could use the key to execute some of the functions that are reserved for admins.

If a physical hardware wallet would be used, all the encryption and signing would be done
inside the wallet, which means that the private key would never be revealed to anyone.
Mistyping wouldn’t be an issue anymore since the private key never needs to be entered by
the admins. Someone spying on the computer’s screen to get hold of the private keys also
wouldn’t be an issue, because the key won’t ever be displayed to anyone.

Another benefit of hardware wallets is that in the unlikely scenario where someone installs a
virus that would try to get access to the admin’s private keys on a computer that is used to
create an election, the virus wouldn’t be able to get hold of the private keys, because they are
never directly exposed to the computer.

5.5.6 Access Letter Encryption between Registration App and Printers
When voter accounts are generated with the registration app, they are currently stored
unencrypted in the downloads folder of the computer where the registration app is installed
on. This is not very secure, because anyone who gets hold of the files containing the access
letters could open them and copy the mnemonics which would allow them to vote on the poll,
even if they are not authorized to do so. This person could be an admin or someone who
managed to intercept the file with the access letters while it was being transported to the
printers.

To prevent this in a future version, the printers would generate an RSA key pair (referred to as
printer RSA keys and not to be confused with the other RSA keys used during the election) and
give the public printer key to the registrars before they start registering users. The registrars
would then enter the printer RSA public key in the registration app, which will then encrypt the
access letters after they are generated. This way, a rogue admin or someone unauthorized who
manages to intercept the access letters won’t be able to get hold of the mnemonics and use
them to vote on the poll. The access letters can then only be decrypted by the printers, which
have the printer RSA private key.

The reasons why I didn’t implement this feature are that I didn’t have enough time and that it
would have made testing even more time-consuming.

5.5.7 Rewrite Code that generates Access Letters to C++
The code that generates the access letters in the registration app is written in JavaScript and
runs in an electron app. While electron makes it easy to build cross-platform apps with
JavaScript, HTML, and CSS, it is not particularly fast when running resource-intensive tasks.
The app has no problems generating access letters for only a few voters and does so in a few
seconds. But when there are a lot of users, the app needs a lot of time. It would make sense
to rewrite the resource-intensive code in C++ and then execute it in its own child process inside
the electron app. C++ is faster than Node.js for several reasons, one of the main reasons being
that C++ is a fully compiled language, which means that that there is no runtime parsing of
source code like in JavaScript. (Baker, 2019)

59 |

5.5.8 Use ECC Keys instead of RSA Keys for Vote Encryption
ECC57 keys are more secure than RSA keys with the same length. A standard 256-bit ECC key
for example offers the same security as a 3072-bit RSA key. (PKI Consortium, 2014) Since a
public ECC key is shorter than a public RSA key with the same level of security, it would be
cheaper to store an ECC public key on the blockchain.

5.5.9 Use dedicated Nodes
The project currently always uses Ethereum nodes provided either by the company Alchemy or
Infura to access the blockchain. This means that whenever someone, be it a voter or an admin,
needs to get data from the blockchain or execute a function on the smart contract, the request
is first sent to Alchemy or Infura, which will then execute the request on one of their nodes.
Although it is not very likely, they could deliberately send wrong information about the
contract’s state and the status of transactions. This risk could be mitigated in the future if the
organiser of the poll would use their own nodes, so they wouldn’t need to rely on a third party.
I didn’t use custom nodes because I didn’t have a computer with enough storage space
available to store a copy of the Ethereum blockchain.

5.5.10 Better and more accessible UI
The current design of the admin and voting app isn’t extremely bad and do their job. However,
because I used the standard Bootstrap 4 components, it also isn’t very aesthetically pleasing
in my opinion. If I had more time available, I would have written a custom Bootstrap theme,
which would have given the apps a more futuristic design - appropriate for e-voting apps.

5.5.11 Custom Blockchain
In a more advanced version of the system, it could also make sense to build and use a custom
blockchain only for e-voting. The blockchain would still be Ethereum based but could be
modified to reduce transaction costs to a minimum by using a proof of authority or proof of
stake consensus algorithm instead of proof of work. There could also be a feature that would
allow contracts to pay for the transaction costs of their voters, so there would be no need for
a relay anymore. The transactions could be sent directly to the blockchain, which would make
the e-voting system more decentralized and resilient.

A custom blockchain would also allow implementing shadow transactions in the form of a
zero-knowledge proof, as described in an earlier section, directly in the blockchain’s code, so
smart contracts wouldn’t have to implement the required code themselves.

Another feature of the blockchain could be that it would allow to generate and store RSA keys
decentrally, where all nodes know the public key, but the private key would be spread across
multiple validator nodes, which would only reveal their part of the private key when for instance
a certain condition stated in a smart contract is fulfilled. It is not very likely that this feature
can securely be implemented in a blockchain soon because there are still a lot of challenges
and open questions ahead on how a system like this would be built, but for the e-voting
system, it would remove the need to trust the electoral board that they won’t decrypt the RSA
private key before the election ends.

If a custom blockchain would be used in the future, it would need to be ensured that there will
be enough nodes operated by a variety of different entities.

57 https://en.wikipedia.org/wiki/Elliptic-curve_cryptography

60 |

5.5.12 Use different Salt than UUID
When a vote is generated, it currently uses a UUID as a salt to make the vote hash unique.
This is not a good solution, because UUIDs are unique but not particularly random, which makes
it easier to guess than a salt generated by a function that returns random values. That’s why
in a future version a function that returns a random salt should be used instead of a UUID. It
could also be considered to use multiple salting rounds.

5.5.13 Improve Component Structure inside the Admin App
Many files inside the components folder in the admin app contain multiple components. These
components could be split up into individual files. The structure could also be improved by
creating folders that contain the subcomponents of their respective parent components.

5.5.14 Add Tests and CI to the other Applications
Currently, only the smart contract has test cases and uses continuous integration. Adding tests
to the frontends and other apps would reduce the risk of faulty software being deployed in the
future.

5.5.15 Convert CLI Tool to Desktop Application
To make the functions of the CLI tool easier to access and use, it would make sense to convert
it to an electron app in the future. The desktop app of the CLI tool could even be merged with
the registration app, making setup and use even easier by removing a software component.

61 |

5.6 Conclusion
At the beginning of the paper, it was determined that the system should fulfil the requirements
set out in the requirement catalogue of the federal chancellery along with some requirements
I set out myself. The system should be able to fulfil the requirements for a basic permit,
guarantee the individual and complete verifiability of the votes, be user friendly and accessible
to voters with disabilities, don’t allow casting of invalid ballots and needs to keep the votes
secret until the election ends. Additionally, from my own requirements, the system should also
be useable for non-governmental elections and store important data and logic on the
blockchain as far as possible.

Now coming back to the central question of the chapter:

Is it possible to build a decentralized e-voting system that can be
used for governmental elections in Switzerland on initiatives and

referendums?

Yes, it is possible to write a decentralized e-voting system that can be used for voting on
initiatives and referendums in Switzerland. The system I designed would need some
improvements to be actually used for real governmental elections, but the results of the
requirements analysis show that the system meets most of the requirements set out by the
federal chancellery and myself.

The system allows voting on initiatives and referendums like they are common in Switzerland,
but also voting on private elections where the voters can vote on one option out of a maximum
of 5 options. The system preserves the privacy of the voters and the secrecy of the vote, while
at the same time having a public and transparent voting process, which is not the case with
other systems. The system allows each voter and the administrators, and in general, any
interested entity, to see live how the encrypted votes are being received by the smart contract,
how the votes are counted at the end of the election and much more. This means they can also
check if everything is done correctly. Also, anyone can view the source code of the deployed
smart contract to make sure that everything is correct and to check if there are any backdoors
or security vulnerabilities.

The paper has shown that in the area of system design the major problems of a decentralized
e-voting system are the payment of the transaction fees when casting the votes and the secure
storage of the votes between casting and counting. These problems can be solved by using a
relay that pays the transaction fees when the votes are cast and by encrypting the votes with
a public key before sending them to the smart contract and then storing the votes in the event
log of the smart contract. Furthermore, extremely high transaction fees on the main Ethereum
blockchain can be avoided when using other Ethereum based blockchains, because they usually
have much lower transaction fees and are also faster.

I enjoyed working on the project and did not find it easy in terms of difficulty, there were
several major challenges mainly regarding system design where I really had to work for several
days to find a solution. I always had to make sure that the implementation of one requirement
did not compromise another requirement or the security of the system. Especially in security I
always had to think in advance where the system could potentially be attacked and how this
could be prevented. In the end, I would have liked to implement some of the improvement

62 |

suggestions I made to make the system even better, which unfortunately was not possible
because I didn’t have enough time left.

I also learned a lot about Ethereum and blockchain technologies, which I find a very interesting
topic where there are still a lot of opportunities for new applications and inventions. Even
though I already knew react and JavaScript before starting the project, I learned a lot more
about them during the project and it certainly improved the quality of the code I am writing in
JavaScript. With solidity, I also learned a completely new programming language that I can
also use in the future in other software projects.

63 |

6 Appendix

6.1 Bibliography
Baker, S. (2019, February 7). Why is C++ so much faster than Javascript, but harder to code?

Retrieved from Quora: https://www.quora.com/Why-is-C-so-much-faster-than-
Javascript-but-harder-to-code

Berg, P. R. (2019, August 11). Writing Accurate Time-Dependent Truffle Tests. Retrieved from
Medium: https://medium.com/sablier/writing-accurate-time-dependent-truffle-tests-
8febc827acb5

Bundesamt für Statistik. (2021, December 12). Stimmbeteiligung. Retrieved from Bundesamt
für Statistik:
https://www.bfs.admin.ch/bfs/de/home/statistiken/politik/abstimmungen/stimmbeteil
igung.html

Cloudflare. (2021, November 29). How does public key encryption work? | Public key
cryptography and SSL. Retrieved from Cloudflare: https://cloudflare.com

Edpresso Team. (2021, November 29). What is hashing? Retrieved from educative:
https://www.educative.io/edpresso/what-is-hashing

Ethereum Foundation. (2021, November 11). Gas and Fees. Retrieved from Ethereum:
https://ethereum.org/en/developers/docs/gas/

Ethereum Foundation. (2021, October 30). Introduction to smart contracts. Retrieved from
Ethereum: https://ethereum.org/en/developers/docs/smart-contracts/

Ethereum Foundation. (2021, October 19). Introduction to smart contracts. Retrieved from
Ethereum: https://ethereum.org/en/smart-contracts/

Federal Chancellery. (2014, June). Retrieved from Federal Chancellery:
https://www.bk.admin.ch/bk/en/home/politische-rechte/e-voting.html

Federal Chancellery. (2021, December 12). E-Voting. Retrieved from Federal Chancellery FCh:
https://www.bk.admin.ch/bk/de/home/politische-rechte/e-voting.html

Infante, R. (2019). Building Ethereum Dapps. Shelter Island: Manning Publications Co.

My Crypto. (2021, October 26). How Do Secret Recovery Phrases Work? Retrieved from My
Crypto: https://support.mycrypto.com/general-knowledge/cryptography/how-do-
mnemonic-phrases-work/

OpenGSN. (2021, November 21). Ethereum Gas Station Network (GSN). Retrieved from GSN
Documentation: https://docs.opengsn.org/

PKI Consortium. (2014, June 10). Benefits of Elliptic Curve Cryptography. Retrieved from PKI
Consortium: https://pkic.org/2014/06/10/benefits-of-elliptic-curve-cryptography/

Twilio. (2021, December 9). What is Public Key Cryptography? Retrieved from Twilio Blog:
https://www.twilio.com/blog/what-is-public-key-cryptography

Wietlisbach, O. (2019, March 12). Das E-Voting der Post ist offiziell gehackt – so reagieren Bund,
Post und die Hacker. Retrieved from Watson:

64 |

https://www.watson.ch/digital/schweiz/775256008-das-e-voting-der-post-ist-
offiziell-gehackt-so-reagieren-bund-und-post

Wikipedia. (2021, November 3). Blockchain. Retrieved from Wikipedia:
https://en.wikipedia.org/wiki/Blockchain

Wikipedia. (2021, November 29). Digital signature. Retrieved from Wikipedia:
https://en.wikipedia.org/wiki/Digital_signature

Wikipedia. (2021, December 12). Zero-knowledge proof. Retrieved from Wikipedia:
https://en.wikipedia.org/wiki/Zero-knowledge_proof

6.2 Table of Figures
Figure 1 Public Key Cryptography (Twilio, 2021) .. 5
Figure 2 Trust and security in Dapps thanks to P2P network replication (Infante, 2019) 9
Figure 3 Election Process .. 13
Figure 4 Ropsten Etherscan's Transaction tab of the Evote smart contract 14
Figure 5 Ropsten Etherscan's Contract tab of the Evote smart contract 15
Figure 6 Ropsten Etherscan's Events tab of the Evote smart contract 15
Figure 7 RSA key generation and RSA key storage ... 17
Figure 8 Vote encryption and hashing in the voting app and storage on the smart contract . 18
Figure 9 Vote decryption and vote counting ... 19
Figure 10 Hash tree of the registration app's outputs .. 21
Figure 11 Ethereum address shuffling and mnemonic splitting inside the registration app 24
Figure 12 Screenshot of Jira Software's roadmap view with some of the major tasks 28
Figure 13 Single poll page of the admin app .. 38
Figure 14 Admins page of the admin app ... 38
Figure 15 Poll info page of the registration app ... 39
Figure 16 Menu of the CLI tool ... 39
Figure 17 Voter logged in to the voting app has “No” as option selected before submitting their
vote .. 40
Figure 18 The verify vote page of the voting app after the tallying of the votes 40
Figure 19 Overview of the voting system's software components .. 41
Figure 20 System deployment steps .. 43
Figure 21 Sequence diagram of the poll creation process ... 45
Figure 22 Sequence diagram of the user voting process .. 48
Figure 23 Sequence diagram of the vote counting process .. 51

65 |

6.3 List of Tables
Table 1 Requirements that should be implemented in the voting system 11
Table 2 SSL/TLS encrypted connections and exchanged data .. 20
Table 3 Units of gas required to conduct an election ... 52
Table 4 Gas prices on the different blockchains ... 52
Table 5 Requirement analysis of the federal chancellery's catalogue of requirements 55
Table 6 Requirement analysis of the personal requirements ... 55

6.4 Listings
Listing 1 Example smart contract --- 7
Listing 2 RSA key generation in the CLI tool -- 17
Listing 3 Nonce string that is added to the registration app output ----------------------- 21
Listing 4 Structure of a meta transaction --- 36

6.5 Code Repository
The source code of the project is available on Bitbucket by scanning the QR code below or
entering the URL in a web browser.

URL: https://bitbucket.org/evotesystem/evotesystem/src

6.6 Declaration of Independence

